Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906859624> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2906859624 endingPage "129" @default.
- W2906859624 startingPage "117" @default.
- W2906859624 abstract "The decomposition of graphs is a prominent algorithmic task with numerous applications in computer science. A graph decomposition method is typically associated with a width parameter (such as treewidth) that indicates how well the given graph can be decomposed. Many hard (even #P-hard) algorithmic problems can be solved efficiently if a decomposition of small width is provided; the runtime, however, typically depends exponentially on the decomposition width. Finding an optimal decomposition is itself an NP-hard task. In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters tree-cut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical research community as they offer the algorithmic advantage over treewidth by supporting so-called fixed-parameter algorithms for certain problems that are not fixed-parameter tractable with respect to treewidth. However, the existing research has mostly been theoretical. A main obstacle for any practical or experimental use of these two width parameters is the lack of any practical or implemented algorithm for actually computing the associated decompositions. We address this obstacle by providing the first practical decomposition algorithms.Our approach for computing treecut width and treedepth decompositions is based on efficient encodings of these decomposition methods to the propositional satisfiability problem (SAT). Once an encoding is generated, any satisfiability solver can be used to find the decomposition. This allows us to leverage the surprising power of todays state-of-the art SAT solvers. The success of SAT-based decomposition methods crucially depends on the used characterisation of the decomposition method, as not every characterisation is suitable for that task. For instance, the successful leading SAT encoding for treewidth is based on a characterisation of treewidth in terms of elimination orderings. For treecut width and treedepth, however, we propose new characterisations that are based on sequences of partitions of the vertex set, a method that was pioneered for clique-width. We implemented and systematically tested our encodings on various benchmark instances, including famous named graphs and random graphs of various density. It turned out that for the considered width parameters, our partition-based SAT encoding even outperforms the best existing SAT encoding for treewidth.We hope that our encodings—which we will make publicly available—will stimulate the experimental research on the algorithmic use of treecut width and tree depth, and thus will help to bride the gap between theoretical and experimental research. For future work we propose to scale our approach to larger graphs by means of SAT-based local improvement, a method that have been recently shown successful for the width parameters treewidth and branchwidth." @default.
- W2906859624 created "2019-01-11" @default.
- W2906859624 creator A5017076947 @default.
- W2906859624 creator A5028911972 @default.
- W2906859624 creator A5037092803 @default.
- W2906859624 creator A5088116512 @default.
- W2906859624 date "2019-01-01" @default.
- W2906859624 modified "2023-10-14" @default.
- W2906859624 title "SAT-Encodings for Treecut Width and Treedepth" @default.
- W2906859624 doi "https://doi.org/10.1137/1.9781611975499.10" @default.
- W2906859624 hasPublicationYear "2019" @default.
- W2906859624 type Work @default.
- W2906859624 sameAs 2906859624 @default.
- W2906859624 citedByCount "11" @default.
- W2906859624 countsByYear W29068596242019 @default.
- W2906859624 countsByYear W29068596242020 @default.
- W2906859624 countsByYear W29068596242021 @default.
- W2906859624 countsByYear W29068596242022 @default.
- W2906859624 countsByYear W29068596242023 @default.
- W2906859624 crossrefType "book-chapter" @default.
- W2906859624 hasAuthorship W2906859624A5017076947 @default.
- W2906859624 hasAuthorship W2906859624A5028911972 @default.
- W2906859624 hasAuthorship W2906859624A5037092803 @default.
- W2906859624 hasAuthorship W2906859624A5088116512 @default.
- W2906859624 hasBestOaLocation W29068596241 @default.
- W2906859624 hasConcept C11413529 @default.
- W2906859624 hasConcept C124681953 @default.
- W2906859624 hasConcept C132525143 @default.
- W2906859624 hasConcept C132569581 @default.
- W2906859624 hasConcept C153083717 @default.
- W2906859624 hasConcept C154945302 @default.
- W2906859624 hasConcept C168773769 @default.
- W2906859624 hasConcept C18903297 @default.
- W2906859624 hasConcept C199360897 @default.
- W2906859624 hasConcept C203776342 @default.
- W2906859624 hasConcept C2778770139 @default.
- W2906859624 hasConcept C41008148 @default.
- W2906859624 hasConcept C43517604 @default.
- W2906859624 hasConcept C70501317 @default.
- W2906859624 hasConcept C80444323 @default.
- W2906859624 hasConcept C86803240 @default.
- W2906859624 hasConceptScore W2906859624C11413529 @default.
- W2906859624 hasConceptScore W2906859624C124681953 @default.
- W2906859624 hasConceptScore W2906859624C132525143 @default.
- W2906859624 hasConceptScore W2906859624C132569581 @default.
- W2906859624 hasConceptScore W2906859624C153083717 @default.
- W2906859624 hasConceptScore W2906859624C154945302 @default.
- W2906859624 hasConceptScore W2906859624C168773769 @default.
- W2906859624 hasConceptScore W2906859624C18903297 @default.
- W2906859624 hasConceptScore W2906859624C199360897 @default.
- W2906859624 hasConceptScore W2906859624C203776342 @default.
- W2906859624 hasConceptScore W2906859624C2778770139 @default.
- W2906859624 hasConceptScore W2906859624C41008148 @default.
- W2906859624 hasConceptScore W2906859624C43517604 @default.
- W2906859624 hasConceptScore W2906859624C70501317 @default.
- W2906859624 hasConceptScore W2906859624C80444323 @default.
- W2906859624 hasConceptScore W2906859624C86803240 @default.
- W2906859624 hasLocation W29068596241 @default.
- W2906859624 hasLocation W29068596242 @default.
- W2906859624 hasLocation W29068596243 @default.
- W2906859624 hasOpenAccess W2906859624 @default.
- W2906859624 hasPrimaryLocation W29068596241 @default.
- W2906859624 hasRelatedWork W1591338016 @default.
- W2906859624 hasRelatedWork W2083408803 @default.
- W2906859624 hasRelatedWork W2099439930 @default.
- W2906859624 hasRelatedWork W2149632978 @default.
- W2906859624 hasRelatedWork W2156861518 @default.
- W2906859624 hasRelatedWork W2906859624 @default.
- W2906859624 hasRelatedWork W3080805160 @default.
- W2906859624 hasRelatedWork W4381333545 @default.
- W2906859624 hasRelatedWork W49964765 @default.
- W2906859624 hasRelatedWork W850938079 @default.
- W2906859624 isParatext "false" @default.
- W2906859624 isRetracted "false" @default.
- W2906859624 magId "2906859624" @default.
- W2906859624 workType "book-chapter" @default.