Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906867461> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2906867461 abstract "We present an approach to numerical homogenization of the elastic response of microstructures. Our work uses deep neural network representations trained on data obtained from direct numerical simulation (DNS) of martensitic phase transformations. The microscopic model leading to the microstructures is based on non-convex free energy density functions that give rise to martensitic variants, and must be extended to gradient theories of elasticity at finite strain. These strain gradients introduce interfacial energies as well as coercify the model, enabling the admission of a large number of solutions, each having finely laminated microstructures. The numerical stiffness of these DNS solutions and the fine scales of response make the data expensive to obtain, while also motivating the search for homogenized representations of their response for the purpose of engineering design. The high-dimensionality of the problem is reduced by training deep neural networks (DNNs) on the effective response by using the scalar free energy density data. The novelty in our approach is that the trained DNNs also return high-fidelity representations of derivative data, specifically the stresses. This allows the recapitulation of the classic hyperelastic response of continuum elasticity via the DNN representation. Also included are detailed optimization studies over hyperparameters, and convergence with size of datasets." @default.
- W2906867461 created "2019-01-11" @default.
- W2906867461 creator A5018123365 @default.
- W2906867461 creator A5026824061 @default.
- W2906867461 date "2019-01-02" @default.
- W2906867461 modified "2023-10-18" @default.
- W2906867461 title "Machine learning materials physics: Deep neural networks trained on elastic free energy data from martensitic microstructures predict homogenized stress fields with high accuracy" @default.
- W2906867461 cites W1998193373 @default.
- W2906867461 cites W2009223819 @default.
- W2906867461 cites W2042682843 @default.
- W2906867461 cites W2049957327 @default.
- W2906867461 cites W2051474952 @default.
- W2906867461 cites W2068873315 @default.
- W2906867461 cites W2093625674 @default.
- W2906867461 cites W2143638480 @default.
- W2906867461 cites W2261676784 @default.
- W2906867461 doi "https://doi.org/10.48550/arxiv.1901.00524" @default.
- W2906867461 hasPublicationYear "2019" @default.
- W2906867461 type Work @default.
- W2906867461 sameAs 2906867461 @default.
- W2906867461 citedByCount "3" @default.
- W2906867461 countsByYear W29068674612019 @default.
- W2906867461 countsByYear W29068674612020 @default.
- W2906867461 crossrefType "posted-content" @default.
- W2906867461 hasAuthorship W2906867461A5018123365 @default.
- W2906867461 hasAuthorship W2906867461A5026824061 @default.
- W2906867461 hasBestOaLocation W29068674611 @default.
- W2906867461 hasConcept C111030470 @default.
- W2906867461 hasConcept C121332964 @default.
- W2906867461 hasConcept C121864883 @default.
- W2906867461 hasConcept C130217890 @default.
- W2906867461 hasConcept C134306372 @default.
- W2906867461 hasConcept C135628077 @default.
- W2906867461 hasConcept C147370603 @default.
- W2906867461 hasConcept C154945302 @default.
- W2906867461 hasConcept C163892269 @default.
- W2906867461 hasConcept C18903297 @default.
- W2906867461 hasConcept C191640071 @default.
- W2906867461 hasConcept C192562407 @default.
- W2906867461 hasConcept C20192703 @default.
- W2906867461 hasConcept C2778722038 @default.
- W2906867461 hasConcept C28826006 @default.
- W2906867461 hasConcept C33923547 @default.
- W2906867461 hasConcept C41008148 @default.
- W2906867461 hasConcept C50644808 @default.
- W2906867461 hasConcept C86803240 @default.
- W2906867461 hasConcept C97355855 @default.
- W2906867461 hasConceptScore W2906867461C111030470 @default.
- W2906867461 hasConceptScore W2906867461C121332964 @default.
- W2906867461 hasConceptScore W2906867461C121864883 @default.
- W2906867461 hasConceptScore W2906867461C130217890 @default.
- W2906867461 hasConceptScore W2906867461C134306372 @default.
- W2906867461 hasConceptScore W2906867461C135628077 @default.
- W2906867461 hasConceptScore W2906867461C147370603 @default.
- W2906867461 hasConceptScore W2906867461C154945302 @default.
- W2906867461 hasConceptScore W2906867461C163892269 @default.
- W2906867461 hasConceptScore W2906867461C18903297 @default.
- W2906867461 hasConceptScore W2906867461C191640071 @default.
- W2906867461 hasConceptScore W2906867461C192562407 @default.
- W2906867461 hasConceptScore W2906867461C20192703 @default.
- W2906867461 hasConceptScore W2906867461C2778722038 @default.
- W2906867461 hasConceptScore W2906867461C28826006 @default.
- W2906867461 hasConceptScore W2906867461C33923547 @default.
- W2906867461 hasConceptScore W2906867461C41008148 @default.
- W2906867461 hasConceptScore W2906867461C50644808 @default.
- W2906867461 hasConceptScore W2906867461C86803240 @default.
- W2906867461 hasConceptScore W2906867461C97355855 @default.
- W2906867461 hasLocation W29068674611 @default.
- W2906867461 hasOpenAccess W2906867461 @default.
- W2906867461 hasPrimaryLocation W29068674611 @default.
- W2906867461 hasRelatedWork W1965847368 @default.
- W2906867461 hasRelatedWork W1984050073 @default.
- W2906867461 hasRelatedWork W2041861244 @default.
- W2906867461 hasRelatedWork W2046560716 @default.
- W2906867461 hasRelatedWork W2061795070 @default.
- W2906867461 hasRelatedWork W2079349426 @default.
- W2906867461 hasRelatedWork W2116379499 @default.
- W2906867461 hasRelatedWork W2331081835 @default.
- W2906867461 hasRelatedWork W2559939202 @default.
- W2906867461 hasRelatedWork W2906867461 @default.
- W2906867461 isParatext "false" @default.
- W2906867461 isRetracted "false" @default.
- W2906867461 magId "2906867461" @default.
- W2906867461 workType "article" @default.