Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906931304> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2906931304 endingPage "8038" @default.
- W2906931304 startingPage "8028" @default.
- W2906931304 abstract "Aggressive driving, amongst inappropriate driving behaviors, is largely responsible for leading to traffic accidents, which threatens both the safety and property of human beings. With the objective to reduce traffic accidents and improve road safety, effective and reliable aggressive driving recognition methods, which enables the development of driving behavior analysis and early warning systems, are urgently needed. Most recently, the research focus of aggressive recognition has shifted to the use of vehicle motion data, which has emerged as a new tool for traffic phenomenon explanation. As aggressive driving corresponds to sudden variations in data, they can be recognized based on the recorded vehicle motion data. In this paper, several kinds of anomaly recognition algorithms are studied and compared, using the motion data collected by the accelerometer and gyroscope of a smartphone mounted on the vehicle. Gaussian mixture model (GMM), partial least squares regression (PLSR), wavelet transformation, and support vector regression (SVR) are considered as the representative algorithms of statistical regression, time series analysis, and machine learning, respectively. These algorithms are evaluated by the three widely used validation metrics, including F1-score, precision, and recall. The empirical results show that GMM, PLSR, and SVR are promising methods for aggressive driving recognition. GMM and SVR outperform PLSR when only single-source dataset is used. The improvement of F1-score is almost 0.1. PLSR performs the best when multi-source datasets are used, and the F1-score is 0.77. GMM and SVR are more robust to hyperparameter. In addition, incorporating multi-source datasets helps improve the accuracy of aggressive driving behavior recognition." @default.
- W2906931304 created "2019-01-11" @default.
- W2906931304 creator A5001718467 @default.
- W2906931304 creator A5016757375 @default.
- W2906931304 creator A5020739875 @default.
- W2906931304 creator A5041638594 @default.
- W2906931304 creator A5065969815 @default.
- W2906931304 date "2019-01-01" @default.
- W2906931304 modified "2023-10-18" @default.
- W2906931304 title "A Comparative Study of Aggressive Driving Behavior Recognition Algorithms Based on Vehicle Motion Data" @default.
- W2906931304 cites W1983775105 @default.
- W2906931304 cites W1993479360 @default.
- W2906931304 cites W1999005035 @default.
- W2906931304 cites W2013480952 @default.
- W2906931304 cites W2043641984 @default.
- W2906931304 cites W2064236159 @default.
- W2906931304 cites W2092728879 @default.
- W2906931304 cites W2103618108 @default.
- W2906931304 cites W2116263092 @default.
- W2906931304 cites W2128678906 @default.
- W2906931304 cites W2133658999 @default.
- W2906931304 cites W2135801466 @default.
- W2906931304 cites W2156557762 @default.
- W2906931304 cites W2159059886 @default.
- W2906931304 cites W2166446427 @default.
- W2906931304 cites W2167654764 @default.
- W2906931304 cites W2224135462 @default.
- W2906931304 cites W2333777777 @default.
- W2906931304 cites W2581239346 @default.
- W2906931304 cites W2605751614 @default.
- W2906931304 cites W2613334841 @default.
- W2906931304 cites W2883499538 @default.
- W2906931304 cites W3123403928 @default.
- W2906931304 doi "https://doi.org/10.1109/access.2018.2889751" @default.
- W2906931304 hasPublicationYear "2019" @default.
- W2906931304 type Work @default.
- W2906931304 sameAs 2906931304 @default.
- W2906931304 citedByCount "40" @default.
- W2906931304 countsByYear W29069313042019 @default.
- W2906931304 countsByYear W29069313042020 @default.
- W2906931304 countsByYear W29069313042021 @default.
- W2906931304 countsByYear W29069313042022 @default.
- W2906931304 countsByYear W29069313042023 @default.
- W2906931304 crossrefType "journal-article" @default.
- W2906931304 hasAuthorship W2906931304A5001718467 @default.
- W2906931304 hasAuthorship W2906931304A5016757375 @default.
- W2906931304 hasAuthorship W2906931304A5020739875 @default.
- W2906931304 hasAuthorship W2906931304A5041638594 @default.
- W2906931304 hasAuthorship W2906931304A5065969815 @default.
- W2906931304 hasBestOaLocation W29069313041 @default.
- W2906931304 hasConcept C104114177 @default.
- W2906931304 hasConcept C11413529 @default.
- W2906931304 hasConcept C154945302 @default.
- W2906931304 hasConcept C31972630 @default.
- W2906931304 hasConcept C41008148 @default.
- W2906931304 hasConceptScore W2906931304C104114177 @default.
- W2906931304 hasConceptScore W2906931304C11413529 @default.
- W2906931304 hasConceptScore W2906931304C154945302 @default.
- W2906931304 hasConceptScore W2906931304C31972630 @default.
- W2906931304 hasConceptScore W2906931304C41008148 @default.
- W2906931304 hasFunder F4320321001 @default.
- W2906931304 hasLocation W29069313041 @default.
- W2906931304 hasOpenAccess W2906931304 @default.
- W2906931304 hasPrimaryLocation W29069313041 @default.
- W2906931304 hasRelatedWork W2029249305 @default.
- W2906931304 hasRelatedWork W2105769806 @default.
- W2906931304 hasRelatedWork W2115571026 @default.
- W2906931304 hasRelatedWork W2144043954 @default.
- W2906931304 hasRelatedWork W2511137960 @default.
- W2906931304 hasRelatedWork W2604231787 @default.
- W2906931304 hasRelatedWork W2610014769 @default.
- W2906931304 hasRelatedWork W2687972263 @default.
- W2906931304 hasRelatedWork W2895616727 @default.
- W2906931304 hasRelatedWork W3214088465 @default.
- W2906931304 hasVolume "7" @default.
- W2906931304 isParatext "false" @default.
- W2906931304 isRetracted "false" @default.
- W2906931304 magId "2906931304" @default.
- W2906931304 workType "article" @default.