Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906951251> ?p ?o ?g. }
- W2906951251 abstract "Abstract High-throughput drug sensitivity screening has been utilized for facilitating the discovery of drug combinations in cancer. Many existing studies adopted a dose-response matrix design, aiming for the characterization of drug combination sensitivity and synergy. However, there is lack of consensus on the definition of sensitivity and synergy, leading to the use of different mathematical models that do not necessarily agree with each other. We proposed a cross design to enable a more cost-effective testing of sensitivity and synergy for a drug pair. We developed a drug combination sensitivity score (CSS) to summarize the drug combination dose-response curves. Using a high-throughput drug combination dataset, we showed that the CSS is highly reproducible among the replicates. With machine learning approaches such as Elastic Net, Random Forests and Support Vector Machines, the CSS can also be predicted with high accuracy. Furthermore, we defined a synergy score based on the difference between the drug combination and the single drug dose-response curves. We showed that the CSS-based synergy score is able to detect true synergistic and antagonistic drug combinations. The cross drug combination design coupled with the CSS scoring facilitated the evaluation of drug combination sensitivity and synergy using the same scale, with minimal experimental material that is required. Our approach could be utilized as an efficient pipeline for improving the discovery rate in high-throughput drug combination screening. The R scripts for calculating and predicting CSS are available at https://github.com/amalyutina/CSS . Author summary Being a complex disease, cancer is one of the main death causes worldwide. Although new treatment strategies have been achieved with cancers, they still have limited efficacy. Even when there is an initial treatment response, cancer cells can develop drug resistance thus cause disease recurrence. To achieve more effective and safe therapies to treat cancer, patients critically need multi-targeted drug combinations that will kill cancer cells at reduced dosages and thereby avoid side effects that are often associated with the standard treatment. However, the increasing number of possible drug combinations makes a pure experimental approach unfeasible, even with automated drug screening instruments. Therefore, we have proposed a new experimental set up to get the drug combination sensitivity data cost-efficiently and developed a score to quantify the efficiency of the drug combination, called drug combination sensitivity score (CSS). Using public datasets, we have shown that the CSS robustness and its highly predictive nature with an accuracy comparable to the experimental replicates. We have also defined a CSS-based synergy score as a metric of drug interaction and justified its relevance. Thus, we expect the proposed computational techniques to be easily applicable and beneficial in the field of drug combination discovery." @default.
- W2906951251 created "2019-01-11" @default.
- W2906951251 creator A5013303786 @default.
- W2906951251 creator A5058034096 @default.
- W2906951251 creator A5061939140 @default.
- W2906951251 creator A5072217783 @default.
- W2906951251 creator A5075634967 @default.
- W2906951251 creator A5083397767 @default.
- W2906951251 date "2019-01-04" @default.
- W2906951251 modified "2023-10-10" @default.
- W2906951251 title "Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer" @default.
- W2906951251 cites W1696775091 @default.
- W2906951251 cites W1924762808 @default.
- W2906951251 cites W1969391810 @default.
- W2906951251 cites W2060737851 @default.
- W2906951251 cites W2061061337 @default.
- W2906951251 cites W2068577449 @default.
- W2906951251 cites W2079012552 @default.
- W2906951251 cites W2097936772 @default.
- W2906951251 cites W2098627399 @default.
- W2906951251 cites W2108068107 @default.
- W2906951251 cites W2114031931 @default.
- W2906951251 cites W2122825543 @default.
- W2906951251 cites W2143152083 @default.
- W2906951251 cites W2162011385 @default.
- W2906951251 cites W2200017991 @default.
- W2906951251 cites W2299417213 @default.
- W2906951251 cites W2402636472 @default.
- W2906951251 cites W2407075689 @default.
- W2906951251 cites W2461427403 @default.
- W2906951251 cites W2555350707 @default.
- W2906951251 cites W2617974048 @default.
- W2906951251 cites W2751210758 @default.
- W2906951251 cites W2772666794 @default.
- W2906951251 cites W2774112395 @default.
- W2906951251 cites W2885530730 @default.
- W2906951251 cites W2911964244 @default.
- W2906951251 cites W2981475131 @default.
- W2906951251 doi "https://doi.org/10.1101/512244" @default.
- W2906951251 hasPublicationYear "2019" @default.
- W2906951251 type Work @default.
- W2906951251 sameAs 2906951251 @default.
- W2906951251 citedByCount "4" @default.
- W2906951251 countsByYear W29069512512021 @default.
- W2906951251 countsByYear W29069512512022 @default.
- W2906951251 countsByYear W29069512512023 @default.
- W2906951251 crossrefType "posted-content" @default.
- W2906951251 hasAuthorship W2906951251A5013303786 @default.
- W2906951251 hasAuthorship W2906951251A5058034096 @default.
- W2906951251 hasAuthorship W2906951251A5061939140 @default.
- W2906951251 hasAuthorship W2906951251A5072217783 @default.
- W2906951251 hasAuthorship W2906951251A5075634967 @default.
- W2906951251 hasAuthorship W2906951251A5083397767 @default.
- W2906951251 hasBestOaLocation W29069512511 @default.
- W2906951251 hasConcept C119857082 @default.
- W2906951251 hasConcept C127413603 @default.
- W2906951251 hasConcept C154945302 @default.
- W2906951251 hasConcept C199360897 @default.
- W2906951251 hasConcept C21200559 @default.
- W2906951251 hasConcept C24326235 @default.
- W2906951251 hasConcept C2780035454 @default.
- W2906951251 hasConcept C41008148 @default.
- W2906951251 hasConcept C43521106 @default.
- W2906951251 hasConcept C60644358 @default.
- W2906951251 hasConcept C71924100 @default.
- W2906951251 hasConcept C74187038 @default.
- W2906951251 hasConcept C86803240 @default.
- W2906951251 hasConcept C98274493 @default.
- W2906951251 hasConceptScore W2906951251C119857082 @default.
- W2906951251 hasConceptScore W2906951251C127413603 @default.
- W2906951251 hasConceptScore W2906951251C154945302 @default.
- W2906951251 hasConceptScore W2906951251C199360897 @default.
- W2906951251 hasConceptScore W2906951251C21200559 @default.
- W2906951251 hasConceptScore W2906951251C24326235 @default.
- W2906951251 hasConceptScore W2906951251C2780035454 @default.
- W2906951251 hasConceptScore W2906951251C41008148 @default.
- W2906951251 hasConceptScore W2906951251C43521106 @default.
- W2906951251 hasConceptScore W2906951251C60644358 @default.
- W2906951251 hasConceptScore W2906951251C71924100 @default.
- W2906951251 hasConceptScore W2906951251C74187038 @default.
- W2906951251 hasConceptScore W2906951251C86803240 @default.
- W2906951251 hasConceptScore W2906951251C98274493 @default.
- W2906951251 hasLocation W29069512511 @default.
- W2906951251 hasLocation W29069512512 @default.
- W2906951251 hasLocation W29069512513 @default.
- W2906951251 hasOpenAccess W2906951251 @default.
- W2906951251 hasPrimaryLocation W29069512511 @default.
- W2906951251 hasRelatedWork W2748952813 @default.
- W2906951251 hasRelatedWork W2899084033 @default.
- W2906951251 hasRelatedWork W2936852653 @default.
- W2906951251 hasRelatedWork W2961085424 @default.
- W2906951251 hasRelatedWork W2992516105 @default.
- W2906951251 hasRelatedWork W3216512054 @default.
- W2906951251 hasRelatedWork W4210854019 @default.
- W2906951251 hasRelatedWork W4286629047 @default.
- W2906951251 hasRelatedWork W4306674287 @default.
- W2906951251 hasRelatedWork W4224009465 @default.
- W2906951251 isParatext "false" @default.
- W2906951251 isRetracted "false" @default.
- W2906951251 magId "2906951251" @default.