Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906958611> ?p ?o ?g. }
- W2906958611 endingPage "43" @default.
- W2906958611 startingPage "43" @default.
- W2906958611 abstract "In this paper, we deal with computational uncertainty quantification for stochastic models with one random input parameter. The goal of the paper is twofold: First, to approximate the set of probability density functions of the solution stochastic process, and second, to show the capability of our theoretical findings to deal with some important epidemiological models. The approximations are constructed in terms of a polynomial evaluated at the random input parameter, by means of generalized polynomial chaos expansions and the stochastic Galerkin projection technique. The probability density function of the aforementioned univariate polynomial is computed via the random variable transformation method, by taking into account the domains where the polynomial is strictly monotone. The algebraic/exponential convergence of the Galerkin projections gives rapid convergence of these density functions. The examples are based on fundamental epidemiological models formulated via linear and nonlinear differential and difference equations, where one of the input parameters is assumed to be a random variable." @default.
- W2906958611 created "2019-01-11" @default.
- W2906958611 creator A5001284929 @default.
- W2906958611 creator A5040710243 @default.
- W2906958611 creator A5056833112 @default.
- W2906958611 creator A5071391753 @default.
- W2906958611 date "2019-01-03" @default.
- W2906958611 modified "2023-09-26" @default.
- W2906958611 title "Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models" @default.
- W2906958611 cites W1430906296 @default.
- W2906958611 cites W1965151052 @default.
- W2906958611 cites W1974372796 @default.
- W2906958611 cites W1977050666 @default.
- W2906958611 cites W1982366717 @default.
- W2906958611 cites W2012536155 @default.
- W2906958611 cites W2017219289 @default.
- W2906958611 cites W2017880874 @default.
- W2906958611 cites W2018159038 @default.
- W2906958611 cites W2018314456 @default.
- W2906958611 cites W2026577854 @default.
- W2906958611 cites W2035795603 @default.
- W2906958611 cites W2038468563 @default.
- W2906958611 cites W2041865295 @default.
- W2906958611 cites W2049774453 @default.
- W2906958611 cites W2055880321 @default.
- W2906958611 cites W2056176994 @default.
- W2906958611 cites W2065021732 @default.
- W2906958611 cites W2086108685 @default.
- W2906958611 cites W2087891564 @default.
- W2906958611 cites W2090171599 @default.
- W2906958611 cites W2095035481 @default.
- W2906958611 cites W2113517083 @default.
- W2906958611 cites W2126247351 @default.
- W2906958611 cites W2150062983 @default.
- W2906958611 cites W2176773914 @default.
- W2906958611 cites W2202817780 @default.
- W2906958611 cites W2284189926 @default.
- W2906958611 cites W2579279211 @default.
- W2906958611 cites W2588762221 @default.
- W2906958611 cites W2790394477 @default.
- W2906958611 cites W2809287930 @default.
- W2906958611 cites W2885650180 @default.
- W2906958611 cites W2897354160 @default.
- W2906958611 cites W2901628614 @default.
- W2906958611 cites W4205154398 @default.
- W2906958611 doi "https://doi.org/10.3390/sym11010043" @default.
- W2906958611 hasPublicationYear "2019" @default.
- W2906958611 type Work @default.
- W2906958611 sameAs 2906958611 @default.
- W2906958611 citedByCount "5" @default.
- W2906958611 countsByYear W29069586112020 @default.
- W2906958611 countsByYear W29069586112021 @default.
- W2906958611 countsByYear W29069586112023 @default.
- W2906958611 crossrefType "journal-article" @default.
- W2906958611 hasAuthorship W2906958611A5001284929 @default.
- W2906958611 hasAuthorship W2906958611A5040710243 @default.
- W2906958611 hasAuthorship W2906958611A5056833112 @default.
- W2906958611 hasAuthorship W2906958611A5071391753 @default.
- W2906958611 hasBestOaLocation W29069586111 @default.
- W2906958611 hasConcept C105795698 @default.
- W2906958611 hasConcept C11413529 @default.
- W2906958611 hasConcept C121332964 @default.
- W2906958611 hasConcept C122123141 @default.
- W2906958611 hasConcept C134306372 @default.
- W2906958611 hasConcept C13929819 @default.
- W2906958611 hasConcept C158622935 @default.
- W2906958611 hasConcept C19499675 @default.
- W2906958611 hasConcept C197055811 @default.
- W2906958611 hasConcept C197656079 @default.
- W2906958611 hasConcept C28826006 @default.
- W2906958611 hasConcept C33923547 @default.
- W2906958611 hasConcept C57493831 @default.
- W2906958611 hasConcept C62520636 @default.
- W2906958611 hasConcept C8272713 @default.
- W2906958611 hasConcept C90119067 @default.
- W2906958611 hasConcept C95763700 @default.
- W2906958611 hasConceptScore W2906958611C105795698 @default.
- W2906958611 hasConceptScore W2906958611C11413529 @default.
- W2906958611 hasConceptScore W2906958611C121332964 @default.
- W2906958611 hasConceptScore W2906958611C122123141 @default.
- W2906958611 hasConceptScore W2906958611C134306372 @default.
- W2906958611 hasConceptScore W2906958611C13929819 @default.
- W2906958611 hasConceptScore W2906958611C158622935 @default.
- W2906958611 hasConceptScore W2906958611C19499675 @default.
- W2906958611 hasConceptScore W2906958611C197055811 @default.
- W2906958611 hasConceptScore W2906958611C197656079 @default.
- W2906958611 hasConceptScore W2906958611C28826006 @default.
- W2906958611 hasConceptScore W2906958611C33923547 @default.
- W2906958611 hasConceptScore W2906958611C57493831 @default.
- W2906958611 hasConceptScore W2906958611C62520636 @default.
- W2906958611 hasConceptScore W2906958611C8272713 @default.
- W2906958611 hasConceptScore W2906958611C90119067 @default.
- W2906958611 hasConceptScore W2906958611C95763700 @default.
- W2906958611 hasFunder F4320326262 @default.
- W2906958611 hasFunder F4320334905 @default.
- W2906958611 hasIssue "1" @default.
- W2906958611 hasLocation W29069586111 @default.
- W2906958611 hasLocation W29069586112 @default.