Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907146572> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2907146572 abstract "There has been a considerable progress these last years in speech recognition systems [13]. The word recognition error rate went down with the arrival of deep learning methods. However, if one uses cloud-based speech API and integrates it inside a robotic architecture [33], one still encounters considerable cases of wrong sentences recognition. Thus speech recognition can not be considered as solved especially when an utterance is considered in isolation of its context. Particular solutions, that can be adapted to different Human-Robot Interaction applications and contexts, have to be found. In this perspective, the way children learn language and how our brains process utterances may help us improve how robot process language. Getting inspiration from language acquisition theories and how the brain processes sentences we previously developed a neuro-inspired model of sentence processing. In this study, we investigate how this model can process different levels of abstractions as input: sequences of phonemes, sequences of words or grammatical constructions. We see that even if the model was only tested on grammatical constructions before, it has better performances with words and phonemes inputs." @default.
- W2907146572 created "2019-01-11" @default.
- W2907146572 creator A5051036759 @default.
- W2907146572 date "2018-09-01" @default.
- W2907146572 modified "2023-10-07" @default.
- W2907146572 title "Which Input Abstraction is Better for a Robot Syntax Acquisition Model? Phonemes, Words or Grammatical Constructions?" @default.
- W2907146572 cites W1579838312 @default.
- W2907146572 cites W1594963257 @default.
- W2907146572 cites W1747013363 @default.
- W2907146572 cites W1890493774 @default.
- W2907146572 cites W1922655562 @default.
- W2907146572 cites W1976274322 @default.
- W2907146572 cites W2001483784 @default.
- W2907146572 cites W2001524933 @default.
- W2907146572 cites W2001842864 @default.
- W2907146572 cites W2017197542 @default.
- W2907146572 cites W2026660464 @default.
- W2907146572 cites W2093221030 @default.
- W2907146572 cites W2098047351 @default.
- W2907146572 cites W2110485445 @default.
- W2907146572 cites W2116284362 @default.
- W2907146572 cites W2143623899 @default.
- W2907146572 cites W2147138186 @default.
- W2907146572 cites W2150355110 @default.
- W2907146572 cites W2153579005 @default.
- W2907146572 cites W2156050092 @default.
- W2907146572 cites W2164977118 @default.
- W2907146572 cites W2177933918 @default.
- W2907146572 cites W2189149359 @default.
- W2907146572 cites W2203357322 @default.
- W2907146572 cites W2220867547 @default.
- W2907146572 cites W2294237855 @default.
- W2907146572 cites W2466040151 @default.
- W2907146572 cites W2528115377 @default.
- W2907146572 cites W2549365180 @default.
- W2907146572 cites W2553661821 @default.
- W2907146572 cites W2561299349 @default.
- W2907146572 cites W2962716343 @default.
- W2907146572 cites W2964187267 @default.
- W2907146572 cites W2998527566 @default.
- W2907146572 cites W3110909889 @default.
- W2907146572 cites W3121926921 @default.
- W2907146572 doi "https://doi.org/10.1109/devlrn.2018.8761025" @default.
- W2907146572 hasPublicationYear "2018" @default.
- W2907146572 type Work @default.
- W2907146572 sameAs 2907146572 @default.
- W2907146572 citedByCount "9" @default.
- W2907146572 countsByYear W29071465722019 @default.
- W2907146572 countsByYear W29071465722020 @default.
- W2907146572 countsByYear W29071465722021 @default.
- W2907146572 countsByYear W29071465722022 @default.
- W2907146572 crossrefType "proceedings-article" @default.
- W2907146572 hasAuthorship W2907146572A5051036759 @default.
- W2907146572 hasBestOaLocation W29071465722 @default.
- W2907146572 hasConcept C151730666 @default.
- W2907146572 hasConcept C154945302 @default.
- W2907146572 hasConcept C199360897 @default.
- W2907146572 hasConcept C204321447 @default.
- W2907146572 hasConcept C2775852435 @default.
- W2907146572 hasConcept C2777530160 @default.
- W2907146572 hasConcept C2779343474 @default.
- W2907146572 hasConcept C28490314 @default.
- W2907146572 hasConcept C41008148 @default.
- W2907146572 hasConcept C60048249 @default.
- W2907146572 hasConcept C86803240 @default.
- W2907146572 hasConcept C98045186 @default.
- W2907146572 hasConceptScore W2907146572C151730666 @default.
- W2907146572 hasConceptScore W2907146572C154945302 @default.
- W2907146572 hasConceptScore W2907146572C199360897 @default.
- W2907146572 hasConceptScore W2907146572C204321447 @default.
- W2907146572 hasConceptScore W2907146572C2775852435 @default.
- W2907146572 hasConceptScore W2907146572C2777530160 @default.
- W2907146572 hasConceptScore W2907146572C2779343474 @default.
- W2907146572 hasConceptScore W2907146572C28490314 @default.
- W2907146572 hasConceptScore W2907146572C41008148 @default.
- W2907146572 hasConceptScore W2907146572C60048249 @default.
- W2907146572 hasConceptScore W2907146572C86803240 @default.
- W2907146572 hasConceptScore W2907146572C98045186 @default.
- W2907146572 hasLocation W29071465721 @default.
- W2907146572 hasLocation W29071465722 @default.
- W2907146572 hasLocation W29071465723 @default.
- W2907146572 hasLocation W29071465724 @default.
- W2907146572 hasOpenAccess W2907146572 @default.
- W2907146572 hasPrimaryLocation W29071465721 @default.
- W2907146572 hasRelatedWork W1999617572 @default.
- W2907146572 hasRelatedWork W2333799855 @default.
- W2907146572 hasRelatedWork W2351687372 @default.
- W2907146572 hasRelatedWork W2383414243 @default.
- W2907146572 hasRelatedWork W2384121599 @default.
- W2907146572 hasRelatedWork W2464407842 @default.
- W2907146572 hasRelatedWork W2529301793 @default.
- W2907146572 hasRelatedWork W2562096895 @default.
- W2907146572 hasRelatedWork W3177678247 @default.
- W2907146572 hasRelatedWork W4307784074 @default.
- W2907146572 isParatext "false" @default.
- W2907146572 isRetracted "false" @default.
- W2907146572 magId "2907146572" @default.
- W2907146572 workType "article" @default.