Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907179976> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2907179976 abstract "In energy data analytics, load profile clustering is essential for various smart grid applications such as demand response, load forecasting, and tariff design. Most of the conventional clustering techniques are based on a representative time domain load profile within a certain period, and the daily and seasonal variations are not well captured. In this paper, we propose a deep learning based customer load profile clustering framework that jointly captures daily and seasonal variations. By leveraging convolutional autoencoder (CAE), the yearly load profile in the time domain is converted into a representative vector in the smaller dimensional encoded space. The clusters are then determined based on the vectors encoded by the CAE. We apply the proposed framework to 1,405 households' yearly load profiles and verify that the trained CAE can encode those load profiles into approximately 100 times smaller dimensional space. The encoded load profiles can be decoded by the CAE with a negligible loss between 1–3%. The clustered load images can visualize both daily and seasonal variations, and clustering in the encoded space speeds up the clustering process by almost three orders of magnitude." @default.
- W2907179976 created "2019-01-11" @default.
- W2907179976 creator A5003037377 @default.
- W2907179976 creator A5005676924 @default.
- W2907179976 creator A5048224768 @default.
- W2907179976 creator A5049420521 @default.
- W2907179976 creator A5056354340 @default.
- W2907179976 date "2018-10-01" @default.
- W2907179976 modified "2023-09-25" @default.
- W2907179976 title "Residential Load Profile Clustering via Deep Convolutional Autoencoder" @default.
- W2907179976 cites W1977632775 @default.
- W2907179976 cites W1989866797 @default.
- W2907179976 cites W2043568875 @default.
- W2907179976 cites W2066384055 @default.
- W2907179976 cites W2091283109 @default.
- W2907179976 cites W2116721403 @default.
- W2907179976 cites W2150593711 @default.
- W2907179976 cites W2321807518 @default.
- W2907179976 cites W2513590440 @default.
- W2907179976 cites W2535095268 @default.
- W2907179976 cites W2560168210 @default.
- W2907179976 cites W4213009331 @default.
- W2907179976 cites W4235539094 @default.
- W2907179976 doi "https://doi.org/10.1109/smartgridcomm.2018.8587454" @default.
- W2907179976 hasPublicationYear "2018" @default.
- W2907179976 type Work @default.
- W2907179976 sameAs 2907179976 @default.
- W2907179976 citedByCount "6" @default.
- W2907179976 countsByYear W29071799762019 @default.
- W2907179976 countsByYear W29071799762020 @default.
- W2907179976 countsByYear W29071799762021 @default.
- W2907179976 countsByYear W29071799762023 @default.
- W2907179976 crossrefType "proceedings-article" @default.
- W2907179976 hasAuthorship W2907179976A5003037377 @default.
- W2907179976 hasAuthorship W2907179976A5005676924 @default.
- W2907179976 hasAuthorship W2907179976A5048224768 @default.
- W2907179976 hasAuthorship W2907179976A5049420521 @default.
- W2907179976 hasAuthorship W2907179976A5056354340 @default.
- W2907179976 hasConcept C101738243 @default.
- W2907179976 hasConcept C108583219 @default.
- W2907179976 hasConcept C153180895 @default.
- W2907179976 hasConcept C154945302 @default.
- W2907179976 hasConcept C41008148 @default.
- W2907179976 hasConcept C73555534 @default.
- W2907179976 hasConcept C81363708 @default.
- W2907179976 hasConceptScore W2907179976C101738243 @default.
- W2907179976 hasConceptScore W2907179976C108583219 @default.
- W2907179976 hasConceptScore W2907179976C153180895 @default.
- W2907179976 hasConceptScore W2907179976C154945302 @default.
- W2907179976 hasConceptScore W2907179976C41008148 @default.
- W2907179976 hasConceptScore W2907179976C73555534 @default.
- W2907179976 hasConceptScore W2907179976C81363708 @default.
- W2907179976 hasLocation W29071799761 @default.
- W2907179976 hasOpenAccess W2907179976 @default.
- W2907179976 hasPrimaryLocation W29071799761 @default.
- W2907179976 hasRelatedWork W1546200464 @default.
- W2907179976 hasRelatedWork W2669956259 @default.
- W2907179976 hasRelatedWork W2731899572 @default.
- W2907179976 hasRelatedWork W2732415564 @default.
- W2907179976 hasRelatedWork W2738221750 @default.
- W2907179976 hasRelatedWork W2883657838 @default.
- W2907179976 hasRelatedWork W3088732000 @default.
- W2907179976 hasRelatedWork W3133861977 @default.
- W2907179976 hasRelatedWork W3156786002 @default.
- W2907179976 hasRelatedWork W3186111093 @default.
- W2907179976 isParatext "false" @default.
- W2907179976 isRetracted "false" @default.
- W2907179976 magId "2907179976" @default.
- W2907179976 workType "article" @default.