Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907272481> ?p ?o ?g. }
- W2907272481 abstract "Measuring and feeling the pulse waveform of radial artery at patient's arm wrist has been used in traditional Chinese medicine for thousand years as a diagnostic tool for pregnancy detection. However, in traditional Chinese medicine practice, the pulse waveform was measured by doctors' fingertips, and it is too subjective to quantify and standardize the complex pulse waveform. Its accuracy has been an open question from modern technology perspective. Machine learning is an emerging avenue to transform the complex pulse waveform to a quantitative data which can make diagnosis of pregnancy more precisely. In this study, we used four algorithms of machine learning to analyze digital pulse waveform signal for recognition of pregnancy. Pulse signals from 495 women were measured and collected by a modern digital pulse waveform device. This device converted the pulse waveform into a one-dimensional time domain signal. Both time domain and wavelet domain features were extracted for further waveform analysis. Then these features were sent to different supervised learning models for pattern recognition. Adaptive boosting showed the best detection accuracy among them. Meanwhile, the group of women in the second and third trimester of pregnancy demonstrated higher recognition rate than the group that in first trimester of pregnancy. Our results indicate that pulse waveform can be recorded and analyzed objectively, and machine learning is an effective tool for pregnancy diagnosis in clinical practice." @default.
- W2907272481 created "2019-01-11" @default.
- W2907272481 creator A5010898543 @default.
- W2907272481 creator A5048488478 @default.
- W2907272481 creator A5052044793 @default.
- W2907272481 creator A5059808320 @default.
- W2907272481 creator A5060099404 @default.
- W2907272481 creator A5066710279 @default.
- W2907272481 creator A5075096842 @default.
- W2907272481 date "2018-10-01" @default.
- W2907272481 modified "2023-10-16" @default.
- W2907272481 title "Pulse waveform analysis for pregnancy diagnosis based on machine learning" @default.
- W2907272481 cites W1481903645 @default.
- W2907272481 cites W1603555847 @default.
- W2907272481 cites W1973824934 @default.
- W2907272481 cites W1975846642 @default.
- W2907272481 cites W1988790447 @default.
- W2907272481 cites W1989401714 @default.
- W2907272481 cites W1991725345 @default.
- W2907272481 cites W1996021349 @default.
- W2907272481 cites W2064189633 @default.
- W2907272481 cites W2083780116 @default.
- W2907272481 cites W2096772233 @default.
- W2907272481 cites W2103833664 @default.
- W2907272481 cites W2106706488 @default.
- W2907272481 cites W2119845775 @default.
- W2907272481 cites W2138919567 @default.
- W2907272481 cites W2159920422 @default.
- W2907272481 cites W2171860505 @default.
- W2907272481 cites W2474696439 @default.
- W2907272481 cites W2547725624 @default.
- W2907272481 cites W2565833363 @default.
- W2907272481 cites W2588912224 @default.
- W2907272481 cites W2978725006 @default.
- W2907272481 cites W3104629648 @default.
- W2907272481 doi "https://doi.org/10.1109/iaeac.2018.8577535" @default.
- W2907272481 hasPublicationYear "2018" @default.
- W2907272481 type Work @default.
- W2907272481 sameAs 2907272481 @default.
- W2907272481 citedByCount "3" @default.
- W2907272481 countsByYear W29072724812022 @default.
- W2907272481 countsByYear W29072724812023 @default.
- W2907272481 crossrefType "proceedings-article" @default.
- W2907272481 hasAuthorship W2907272481A5010898543 @default.
- W2907272481 hasAuthorship W2907272481A5048488478 @default.
- W2907272481 hasAuthorship W2907272481A5052044793 @default.
- W2907272481 hasAuthorship W2907272481A5059808320 @default.
- W2907272481 hasAuthorship W2907272481A5060099404 @default.
- W2907272481 hasAuthorship W2907272481A5066710279 @default.
- W2907272481 hasAuthorship W2907272481A5075096842 @default.
- W2907272481 hasConcept C103824480 @default.
- W2907272481 hasConcept C134652429 @default.
- W2907272481 hasConcept C138885662 @default.
- W2907272481 hasConcept C153180895 @default.
- W2907272481 hasConcept C154945302 @default.
- W2907272481 hasConcept C172321821 @default.
- W2907272481 hasConcept C197424946 @default.
- W2907272481 hasConcept C2776401178 @default.
- W2907272481 hasConcept C2780167933 @default.
- W2907272481 hasConcept C28490314 @default.
- W2907272481 hasConcept C2908916285 @default.
- W2907272481 hasConcept C31972630 @default.
- W2907272481 hasConcept C41008148 @default.
- W2907272481 hasConcept C41895202 @default.
- W2907272481 hasConcept C554190296 @default.
- W2907272481 hasConcept C76155785 @default.
- W2907272481 hasConcept C94915269 @default.
- W2907272481 hasConceptScore W2907272481C103824480 @default.
- W2907272481 hasConceptScore W2907272481C134652429 @default.
- W2907272481 hasConceptScore W2907272481C138885662 @default.
- W2907272481 hasConceptScore W2907272481C153180895 @default.
- W2907272481 hasConceptScore W2907272481C154945302 @default.
- W2907272481 hasConceptScore W2907272481C172321821 @default.
- W2907272481 hasConceptScore W2907272481C197424946 @default.
- W2907272481 hasConceptScore W2907272481C2776401178 @default.
- W2907272481 hasConceptScore W2907272481C2780167933 @default.
- W2907272481 hasConceptScore W2907272481C28490314 @default.
- W2907272481 hasConceptScore W2907272481C2908916285 @default.
- W2907272481 hasConceptScore W2907272481C31972630 @default.
- W2907272481 hasConceptScore W2907272481C41008148 @default.
- W2907272481 hasConceptScore W2907272481C41895202 @default.
- W2907272481 hasConceptScore W2907272481C554190296 @default.
- W2907272481 hasConceptScore W2907272481C76155785 @default.
- W2907272481 hasConceptScore W2907272481C94915269 @default.
- W2907272481 hasLocation W29072724811 @default.
- W2907272481 hasOpenAccess W2907272481 @default.
- W2907272481 hasPrimaryLocation W29072724811 @default.
- W2907272481 hasRelatedWork W1530462471 @default.
- W2907272481 hasRelatedWork W2016461833 @default.
- W2907272481 hasRelatedWork W2052253960 @default.
- W2907272481 hasRelatedWork W2147802381 @default.
- W2907272481 hasRelatedWork W2382607599 @default.
- W2907272481 hasRelatedWork W2546942002 @default.
- W2907272481 hasRelatedWork W2554403468 @default.
- W2907272481 hasRelatedWork W2760085659 @default.
- W2907272481 hasRelatedWork W2983739241 @default.
- W2907272481 hasRelatedWork W3189209099 @default.
- W2907272481 isParatext "false" @default.
- W2907272481 isRetracted "false" @default.
- W2907272481 magId "2907272481" @default.