Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907277777> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2907277777 abstract "Recent development of artificial intelligence (AI) makes AI applicable to diverse fields, and the smart grid is not an exception. In particular, there have been extensive researches on load forecasting using deep learning. Most existing studies have been conducted on deep neural network (DNN) and recurrent neural network (RNN). Very recently, CNN with shallow network has been studied for short-term load forecasting (STLF). In this paper, we propose a novel framework based on ResNet/LSTM combined model. The proposed model has two steps. First, ResNet extracts latent features of daily and weekly load data. Then, LSTM is applied to train the encoded feature vector with dynamics, and make prediction suitable for volatile load data. By leveraging ResNet and LSTM, the proposed model has the advantage of forecasting load data that has both regularity and inconsistency. To demonstrate the performance, we compare the proposed model with other deep learning models: multi-layer perceptron (MLP), ResNet, LSTM and ResNet/MLP combined model. The results show that the proposed ResNet/LSTM combined model has 21.3% of MAPE improvement in overall, and 25.8% of MAPE improvement for the bottom 25% group in terms of MAPE compared to MLP." @default.
- W2907277777 created "2019-01-11" @default.
- W2907277777 creator A5005676924 @default.
- W2907277777 creator A5049420521 @default.
- W2907277777 creator A5056354340 @default.
- W2907277777 date "2018-10-01" @default.
- W2907277777 modified "2023-10-18" @default.
- W2907277777 title "Short-Term Load Forecasting based on ResNet and LSTM" @default.
- W2907277777 cites W2064675550 @default.
- W2907277777 cites W2123007178 @default.
- W2907277777 cites W2151767444 @default.
- W2907277777 cites W2194775991 @default.
- W2907277777 cites W2562403923 @default.
- W2907277777 cites W2597560131 @default.
- W2907277777 cites W2742473260 @default.
- W2907277777 cites W2782902016 @default.
- W2907277777 cites W2788553534 @default.
- W2907277777 cites W3104996215 @default.
- W2907277777 doi "https://doi.org/10.1109/smartgridcomm.2018.8587554" @default.
- W2907277777 hasPublicationYear "2018" @default.
- W2907277777 type Work @default.
- W2907277777 sameAs 2907277777 @default.
- W2907277777 citedByCount "39" @default.
- W2907277777 countsByYear W29072777772019 @default.
- W2907277777 countsByYear W29072777772020 @default.
- W2907277777 countsByYear W29072777772021 @default.
- W2907277777 countsByYear W29072777772022 @default.
- W2907277777 countsByYear W29072777772023 @default.
- W2907277777 crossrefType "proceedings-article" @default.
- W2907277777 hasAuthorship W2907277777A5005676924 @default.
- W2907277777 hasAuthorship W2907277777A5049420521 @default.
- W2907277777 hasAuthorship W2907277777A5056354340 @default.
- W2907277777 hasConcept C108583219 @default.
- W2907277777 hasConcept C119857082 @default.
- W2907277777 hasConcept C124101348 @default.
- W2907277777 hasConcept C138885662 @default.
- W2907277777 hasConcept C147168706 @default.
- W2907277777 hasConcept C153180895 @default.
- W2907277777 hasConcept C154945302 @default.
- W2907277777 hasConcept C179717631 @default.
- W2907277777 hasConcept C2776401178 @default.
- W2907277777 hasConcept C2944601119 @default.
- W2907277777 hasConcept C41008148 @default.
- W2907277777 hasConcept C41895202 @default.
- W2907277777 hasConcept C50644808 @default.
- W2907277777 hasConcept C60908668 @default.
- W2907277777 hasConceptScore W2907277777C108583219 @default.
- W2907277777 hasConceptScore W2907277777C119857082 @default.
- W2907277777 hasConceptScore W2907277777C124101348 @default.
- W2907277777 hasConceptScore W2907277777C138885662 @default.
- W2907277777 hasConceptScore W2907277777C147168706 @default.
- W2907277777 hasConceptScore W2907277777C153180895 @default.
- W2907277777 hasConceptScore W2907277777C154945302 @default.
- W2907277777 hasConceptScore W2907277777C179717631 @default.
- W2907277777 hasConceptScore W2907277777C2776401178 @default.
- W2907277777 hasConceptScore W2907277777C2944601119 @default.
- W2907277777 hasConceptScore W2907277777C41008148 @default.
- W2907277777 hasConceptScore W2907277777C41895202 @default.
- W2907277777 hasConceptScore W2907277777C50644808 @default.
- W2907277777 hasConceptScore W2907277777C60908668 @default.
- W2907277777 hasLocation W29072777771 @default.
- W2907277777 hasOpenAccess W2907277777 @default.
- W2907277777 hasPrimaryLocation W29072777771 @default.
- W2907277777 hasRelatedWork W2140225375 @default.
- W2907277777 hasRelatedWork W2604802223 @default.
- W2907277777 hasRelatedWork W2905052559 @default.
- W2907277777 hasRelatedWork W2941320171 @default.
- W2907277777 hasRelatedWork W2943924962 @default.
- W2907277777 hasRelatedWork W2991591812 @default.
- W2907277777 hasRelatedWork W2996568036 @default.
- W2907277777 hasRelatedWork W3213565677 @default.
- W2907277777 hasRelatedWork W4200196661 @default.
- W2907277777 hasRelatedWork W4231994957 @default.
- W2907277777 isParatext "false" @default.
- W2907277777 isRetracted "false" @default.
- W2907277777 magId "2907277777" @default.
- W2907277777 workType "article" @default.