Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907302002> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2907302002 endingPage "11" @default.
- W2907302002 startingPage "1" @default.
- W2907302002 abstract "Productivity is described as the quantitative measure between the number of resources used and the output produced, generally referred to man-hours required to produce the final product in comparison to planned man-hours. Productivity is a key element in determining the success and failure of any construction project. Construction as a labour-driven industry is a major contributor to the gross domestic product of an economy and variations in labour productivity have a significant impact on the economy. Attaining a holistic view of labour productivity is not an easy task because productivity is a function of manageable and unmanageable factors. Compound irregularity is a significant issue in modeling construction labour productivity. Artificial Neural Network (ANN) techniques that use supervised learning algorithms have proved to be more useful than statistical regression techniques considering factors like modeling ease and prediction accuracy. In this study, the expected productivity considering environmental and operational variables was modeled. Various ANN techniques were used including General Regression Neural Network (GRNN), Backpropagation Neural Network (BNN), Radial Base Function Neural Network (RBFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) to compare their respective results in order to choose the best method for estimating expected productivity. Results show that BNN outperforms other techniques for modeling construction labour productivity." @default.
- W2907302002 created "2019-01-11" @default.
- W2907302002 creator A5063631675 @default.
- W2907302002 creator A5069486115 @default.
- W2907302002 creator A5078081105 @default.
- W2907302002 creator A5081966673 @default.
- W2907302002 date "2019-01-02" @default.
- W2907302002 modified "2023-10-18" @default.
- W2907302002 title "Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity" @default.
- W2907302002 cites W1964168965 @default.
- W2907302002 cites W1970636934 @default.
- W2907302002 cites W1983082018 @default.
- W2907302002 cites W1988414291 @default.
- W2907302002 cites W2023346663 @default.
- W2907302002 cites W2024184249 @default.
- W2907302002 cites W2042052953 @default.
- W2907302002 cites W2051964834 @default.
- W2907302002 cites W2054448874 @default.
- W2907302002 cites W2073908752 @default.
- W2907302002 cites W2083923231 @default.
- W2907302002 cites W2091998246 @default.
- W2907302002 cites W2094757630 @default.
- W2907302002 cites W2117883803 @default.
- W2907302002 cites W2121296007 @default.
- W2907302002 cites W2148789269 @default.
- W2907302002 cites W2151694695 @default.
- W2907302002 cites W2171861768 @default.
- W2907302002 cites W2610317674 @default.
- W2907302002 doi "https://doi.org/10.1155/2019/5972620" @default.
- W2907302002 hasPublicationYear "2019" @default.
- W2907302002 type Work @default.
- W2907302002 sameAs 2907302002 @default.
- W2907302002 citedByCount "39" @default.
- W2907302002 countsByYear W29073020022019 @default.
- W2907302002 countsByYear W29073020022020 @default.
- W2907302002 countsByYear W29073020022021 @default.
- W2907302002 countsByYear W29073020022022 @default.
- W2907302002 countsByYear W29073020022023 @default.
- W2907302002 crossrefType "journal-article" @default.
- W2907302002 hasAuthorship W2907302002A5063631675 @default.
- W2907302002 hasAuthorship W2907302002A5069486115 @default.
- W2907302002 hasAuthorship W2907302002A5078081105 @default.
- W2907302002 hasAuthorship W2907302002A5081966673 @default.
- W2907302002 hasBestOaLocation W29073020021 @default.
- W2907302002 hasConcept C119857082 @default.
- W2907302002 hasConcept C120009192 @default.
- W2907302002 hasConcept C139719470 @default.
- W2907302002 hasConcept C149782125 @default.
- W2907302002 hasConcept C151355145 @default.
- W2907302002 hasConcept C154945302 @default.
- W2907302002 hasConcept C155032097 @default.
- W2907302002 hasConcept C162324750 @default.
- W2907302002 hasConcept C186108316 @default.
- W2907302002 hasConcept C195975749 @default.
- W2907302002 hasConcept C204983608 @default.
- W2907302002 hasConcept C33923547 @default.
- W2907302002 hasConcept C41008148 @default.
- W2907302002 hasConcept C50644808 @default.
- W2907302002 hasConcept C58166 @default.
- W2907302002 hasConceptScore W2907302002C119857082 @default.
- W2907302002 hasConceptScore W2907302002C120009192 @default.
- W2907302002 hasConceptScore W2907302002C139719470 @default.
- W2907302002 hasConceptScore W2907302002C149782125 @default.
- W2907302002 hasConceptScore W2907302002C151355145 @default.
- W2907302002 hasConceptScore W2907302002C154945302 @default.
- W2907302002 hasConceptScore W2907302002C155032097 @default.
- W2907302002 hasConceptScore W2907302002C162324750 @default.
- W2907302002 hasConceptScore W2907302002C186108316 @default.
- W2907302002 hasConceptScore W2907302002C195975749 @default.
- W2907302002 hasConceptScore W2907302002C204983608 @default.
- W2907302002 hasConceptScore W2907302002C33923547 @default.
- W2907302002 hasConceptScore W2907302002C41008148 @default.
- W2907302002 hasConceptScore W2907302002C50644808 @default.
- W2907302002 hasConceptScore W2907302002C58166 @default.
- W2907302002 hasLocation W29073020021 @default.
- W2907302002 hasLocation W29073020022 @default.
- W2907302002 hasOpenAccess W2907302002 @default.
- W2907302002 hasPrimaryLocation W29073020021 @default.
- W2907302002 hasRelatedWork W2048308819 @default.
- W2907302002 hasRelatedWork W2159443810 @default.
- W2907302002 hasRelatedWork W2907302002 @default.
- W2907302002 hasRelatedWork W3110271678 @default.
- W2907302002 hasRelatedWork W3132649597 @default.
- W2907302002 hasRelatedWork W3181335979 @default.
- W2907302002 hasRelatedWork W4200599122 @default.
- W2907302002 hasRelatedWork W594580893 @default.
- W2907302002 hasRelatedWork W1629725936 @default.
- W2907302002 hasRelatedWork W2143948663 @default.
- W2907302002 hasVolume "2019" @default.
- W2907302002 isParatext "false" @default.
- W2907302002 isRetracted "false" @default.
- W2907302002 magId "2907302002" @default.
- W2907302002 workType "article" @default.