Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907366958> ?p ?o ?g. }
- W2907366958 endingPage "345" @default.
- W2907366958 startingPage "335" @default.
- W2907366958 abstract "Data-driven methods are attracting growing attention in the field of materials science. In particular, it is now becoming clear that machine learning approaches offer a unique avenue for successfully mining practically useful process-structure-property (PSP) linkages from a variety of materials data. Most previous efforts in this direction have relied on feature design (i.e., the identification of the salient features of the material microstructure to be included in the PSP linkages). However due to the rich complexity of features in most heterogeneous materials systems, it has been difficult to identify a set of consistent features that are transferable from one material system to another. With flexible architecture and remarkable learning capability, the emergent deep learning approaches offer a new path forward that circumvents the feature design step. In this work, we demonstrate the implementation of a deep learning feature-engineering-free approach to the prediction of the microscale elastic strain field in a given three-dimensional voxel-based microstructure of a high-contrast two-phase composite. The results show that deep learning approaches can implicitly learn salient information about local neighborhood details, and significantly outperform state-of-the-art methods." @default.
- W2907366958 created "2019-01-11" @default.
- W2907366958 creator A5004659592 @default.
- W2907366958 creator A5012029915 @default.
- W2907366958 creator A5066130076 @default.
- W2907366958 creator A5074976770 @default.
- W2907366958 creator A5084730059 @default.
- W2907366958 creator A5087186760 @default.
- W2907366958 creator A5088816007 @default.
- W2907366958 date "2019-03-01" @default.
- W2907366958 modified "2023-10-11" @default.
- W2907366958 title "Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches" @default.
- W2907366958 cites W1970785618 @default.
- W2907366958 cites W1972605324 @default.
- W2907366958 cites W1983364832 @default.
- W2907366958 cites W1985028216 @default.
- W2907366958 cites W1988816638 @default.
- W2907366958 cites W2009732279 @default.
- W2907366958 cites W2011162246 @default.
- W2907366958 cites W2011163643 @default.
- W2907366958 cites W2015442614 @default.
- W2907366958 cites W2018440398 @default.
- W2907366958 cites W2031286654 @default.
- W2907366958 cites W2034532318 @default.
- W2907366958 cites W2035406848 @default.
- W2907366958 cites W2037352004 @default.
- W2907366958 cites W2051609521 @default.
- W2907366958 cites W2056665551 @default.
- W2907366958 cites W2066343344 @default.
- W2907366958 cites W2073498024 @default.
- W2907366958 cites W2076146839 @default.
- W2907366958 cites W2077472742 @default.
- W2907366958 cites W2077679340 @default.
- W2907366958 cites W2082666553 @default.
- W2907366958 cites W2085858509 @default.
- W2907366958 cites W2087031190 @default.
- W2907366958 cites W2093250899 @default.
- W2907366958 cites W2112796928 @default.
- W2907366958 cites W2158778629 @default.
- W2907366958 cites W2165698076 @default.
- W2907366958 cites W2173320422 @default.
- W2907366958 cites W2262229344 @default.
- W2907366958 cites W2313966941 @default.
- W2907366958 cites W2323198416 @default.
- W2907366958 cites W2338402873 @default.
- W2907366958 cites W2342002137 @default.
- W2907366958 cites W2593592895 @default.
- W2907366958 cites W2597013552 @default.
- W2907366958 cites W2623217245 @default.
- W2907366958 cites W2737401725 @default.
- W2907366958 cites W2740407088 @default.
- W2907366958 cites W2760710953 @default.
- W2907366958 cites W2767288185 @default.
- W2907366958 cites W2770306942 @default.
- W2907366958 cites W2777965033 @default.
- W2907366958 cites W2793121454 @default.
- W2907366958 cites W2796672611 @default.
- W2907366958 cites W2803170602 @default.
- W2907366958 cites W3112597099 @default.
- W2907366958 doi "https://doi.org/10.1016/j.actamat.2018.12.045" @default.
- W2907366958 hasPublicationYear "2019" @default.
- W2907366958 type Work @default.
- W2907366958 sameAs 2907366958 @default.
- W2907366958 citedByCount "111" @default.
- W2907366958 countsByYear W29073669582019 @default.
- W2907366958 countsByYear W29073669582020 @default.
- W2907366958 countsByYear W29073669582021 @default.
- W2907366958 countsByYear W29073669582022 @default.
- W2907366958 countsByYear W29073669582023 @default.
- W2907366958 crossrefType "journal-article" @default.
- W2907366958 hasAuthorship W2907366958A5004659592 @default.
- W2907366958 hasAuthorship W2907366958A5012029915 @default.
- W2907366958 hasAuthorship W2907366958A5066130076 @default.
- W2907366958 hasAuthorship W2907366958A5074976770 @default.
- W2907366958 hasAuthorship W2907366958A5084730059 @default.
- W2907366958 hasAuthorship W2907366958A5087186760 @default.
- W2907366958 hasAuthorship W2907366958A5088816007 @default.
- W2907366958 hasBestOaLocation W29073669581 @default.
- W2907366958 hasConcept C108583219 @default.
- W2907366958 hasConcept C111472728 @default.
- W2907366958 hasConcept C119857082 @default.
- W2907366958 hasConcept C127413603 @default.
- W2907366958 hasConcept C138885662 @default.
- W2907366958 hasConcept C145420912 @default.
- W2907366958 hasConcept C153180895 @default.
- W2907366958 hasConcept C154945302 @default.
- W2907366958 hasConcept C159985019 @default.
- W2907366958 hasConcept C171250308 @default.
- W2907366958 hasConcept C179428855 @default.
- W2907366958 hasConcept C189950617 @default.
- W2907366958 hasConcept C192562407 @default.
- W2907366958 hasConcept C202444582 @default.
- W2907366958 hasConcept C204366326 @default.
- W2907366958 hasConcept C2776401178 @default.
- W2907366958 hasConcept C2778827112 @default.
- W2907366958 hasConcept C2780719617 @default.
- W2907366958 hasConcept C2780841128 @default.
- W2907366958 hasConcept C33923547 @default.