Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907417050> ?p ?o ?g. }
- W2907417050 abstract "This paper is motivated by the task of detecting anomalies in networks of financial transactions, with accounts as nodes and a directed weighted edge between two nodes denoting a money transfer. The weight of the edge is the transaction amount. Examples of anomalies in networks include long paths of large transaction amounts, rings of large payments, and cliques of accounts. There are many methods available which detect such specific structures in networks. Here we introduce a method which is able to detect previously unspecified anomalies in networks. The method is based on a combination of features from network comparison and spectral analysis as well as local statistics, yielding 140 main features. We then use a simple feature sum method, as well as a random forest method, in order to classify nodes as normal or anomalous. We test the method first on synthetic networks which we generated, and second on a set of synthetic networks which were generated without the methods team having access to the ground truth. The first set of synthetic networks was split in a training set of 70 percent of the networks, and a test set of 30 percent of the networks. The resulting classifier was then applied to the second set of synthetic networks. We compare our method with Oddball, a widely used method for anomaly detection in networks, as well as to random classification. While Oddball outperforms random classification, both our feature sum method and our random forest method outperform Oddball. On the test set, the random forest outperforms feature sum, whereas on the second synthetic data set, initially feature sum tends to pick up more anomalies than random forest, with this behaviour reversing for lower-scoring anomalies. In all cases, the top 2 percent of flagged anomalies contained on average over 90 percent of the planted anomalies." @default.
- W2907417050 created "2019-01-11" @default.
- W2907417050 creator A5003537622 @default.
- W2907417050 creator A5039600886 @default.
- W2907417050 creator A5046192528 @default.
- W2907417050 creator A5049954115 @default.
- W2907417050 creator A5061883359 @default.
- W2907417050 date "2019-01-02" @default.
- W2907417050 modified "2023-09-27" @default.
- W2907417050 title "Anomaly Detection in Networks with Application to Financial Transaction Networks." @default.
- W2907417050 cites W1492581097 @default.
- W2907417050 cites W1496092454 @default.
- W2907417050 cites W1597650360 @default.
- W2907417050 cites W1602011302 @default.
- W2907417050 cites W1714924059 @default.
- W2907417050 cites W1766838353 @default.
- W2907417050 cites W1966105052 @default.
- W2907417050 cites W1966716734 @default.
- W2907417050 cites W1971591815 @default.
- W2907417050 cites W2011301426 @default.
- W2907417050 cites W2027001671 @default.
- W2907417050 cites W2031868344 @default.
- W2907417050 cites W2040840530 @default.
- W2907417050 cites W2046104068 @default.
- W2907417050 cites W2047389283 @default.
- W2907417050 cites W2050537424 @default.
- W2907417050 cites W2053003065 @default.
- W2907417050 cites W2054504053 @default.
- W2907417050 cites W2070378550 @default.
- W2907417050 cites W2085766370 @default.
- W2907417050 cites W2089554624 @default.
- W2907417050 cites W2094990982 @default.
- W2907417050 cites W2101234009 @default.
- W2907417050 cites W2104266030 @default.
- W2907417050 cites W2118341639 @default.
- W2907417050 cites W2132022337 @default.
- W2907417050 cites W2136997350 @default.
- W2907417050 cites W2144182447 @default.
- W2907417050 cites W2145154306 @default.
- W2907417050 cites W2148740744 @default.
- W2907417050 cites W2162384258 @default.
- W2907417050 cites W2165840237 @default.
- W2907417050 cites W2237938520 @default.
- W2907417050 cites W2294076426 @default.
- W2907417050 cites W2402531259 @default.
- W2907417050 cites W2491658878 @default.
- W2907417050 cites W2522834812 @default.
- W2907417050 cites W2585169518 @default.
- W2907417050 cites W2613959248 @default.
- W2907417050 cites W2742099499 @default.
- W2907417050 cites W2756166446 @default.
- W2907417050 cites W2888699885 @default.
- W2907417050 cites W2903566259 @default.
- W2907417050 cites W2911964244 @default.
- W2907417050 cites W2963395938 @default.
- W2907417050 cites W2963664118 @default.
- W2907417050 cites W2963806762 @default.
- W2907417050 cites W3101919829 @default.
- W2907417050 cites W3102498351 @default.
- W2907417050 cites W3190120408 @default.
- W2907417050 cites W348531675 @default.
- W2907417050 cites W4333350 @default.
- W2907417050 cites W857387926 @default.
- W2907417050 hasPublicationYear "2019" @default.
- W2907417050 type Work @default.
- W2907417050 sameAs 2907417050 @default.
- W2907417050 citedByCount "4" @default.
- W2907417050 countsByYear W29074170502019 @default.
- W2907417050 countsByYear W29074170502021 @default.
- W2907417050 crossrefType "posted-content" @default.
- W2907417050 hasAuthorship W2907417050A5003537622 @default.
- W2907417050 hasAuthorship W2907417050A5039600886 @default.
- W2907417050 hasAuthorship W2907417050A5046192528 @default.
- W2907417050 hasAuthorship W2907417050A5049954115 @default.
- W2907417050 hasAuthorship W2907417050A5061883359 @default.
- W2907417050 hasConcept C119857082 @default.
- W2907417050 hasConcept C124101348 @default.
- W2907417050 hasConcept C138885662 @default.
- W2907417050 hasConcept C153180895 @default.
- W2907417050 hasConcept C154945302 @default.
- W2907417050 hasConcept C169258074 @default.
- W2907417050 hasConcept C169903167 @default.
- W2907417050 hasConcept C177264268 @default.
- W2907417050 hasConcept C199360897 @default.
- W2907417050 hasConcept C2776401178 @default.
- W2907417050 hasConcept C41008148 @default.
- W2907417050 hasConcept C41895202 @default.
- W2907417050 hasConcept C739882 @default.
- W2907417050 hasConcept C75949130 @default.
- W2907417050 hasConcept C77088390 @default.
- W2907417050 hasConcept C95623464 @default.
- W2907417050 hasConceptScore W2907417050C119857082 @default.
- W2907417050 hasConceptScore W2907417050C124101348 @default.
- W2907417050 hasConceptScore W2907417050C138885662 @default.
- W2907417050 hasConceptScore W2907417050C153180895 @default.
- W2907417050 hasConceptScore W2907417050C154945302 @default.
- W2907417050 hasConceptScore W2907417050C169258074 @default.
- W2907417050 hasConceptScore W2907417050C169903167 @default.
- W2907417050 hasConceptScore W2907417050C177264268 @default.
- W2907417050 hasConceptScore W2907417050C199360897 @default.