Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907436345> ?p ?o ?g. }
- W2907436345 endingPage "2948" @default.
- W2907436345 startingPage "2933" @default.
- W2907436345 abstract "Abstract. Fine particulate matter (PM2.5) is of great concern to the public due to its significant risk to human health. Numerous methods have been developed to estimate spatial PM2.5 concentrations in unobserved locations due to the sparse number of fixed monitoring stations. Due to an increase in low-cost sensing for air pollution monitoring, crowdsourced monitoring of exposure control has been gradually introduced into cities. However, the optimal mapping method for conventional sparse fixed measurements may not be suitable for this new high-density monitoring approach. This study presents a crowdsourced sampling campaign and strategies of method selection for 100 m scale PM2.5 mapping in an intra-urban area of China. During this process, PM2.5 concentrations were measured by laser air quality monitors through a group of volunteers during two 5 h periods. Three extensively employed modelling methods (ordinary kriging, OK; land use regression, LUR; and regression kriging, RK) were adopted to evaluate the performance. An interesting finding is that PM2.5 concentrations in micro-environments varied in the intra-urban area. These local PM2.5 variations can be easily identified by crowdsourced sampling rather than national air quality monitoring stations. The selection of models for fine-scale PM2.5 concentration mapping should be adjusted according to the changing sampling and pollution circumstances. During this project, OK interpolation performs best in conditions with non-peak traffic situations during a lightly polluted period (holdout validation R2: 0.47–0.82), while the RK modelling can perform better during the heavily polluted period (0.32–0.68) and in conditions with peak traffic and relatively few sampling sites (fewer than ∼100) during the lightly polluted period (0.40–0.69). Additionally, the LUR model demonstrates limited ability in estimating PM2.5 concentrations on very fine spatial and temporal scales in this study (0.04–0.55), which challenges the traditional point about the good performance of the LUR model for air pollution mapping. This method selection strategy provides empirical evidence for the best method selection for PM2.5 mapping using crowdsourced monitoring, and this provides a promising way to reduce the exposure risks for individuals in their daily life." @default.
- W2907436345 created "2019-01-11" @default.
- W2907436345 creator A5012197151 @default.
- W2907436345 creator A5045350805 @default.
- W2907436345 creator A5058879833 @default.
- W2907436345 creator A5063628781 @default.
- W2907436345 creator A5066343293 @default.
- W2907436345 creator A5087803782 @default.
- W2907436345 date "2019-05-28" @default.
- W2907436345 modified "2023-10-16" @default.
- W2907436345 title "Strategies of method selection for fine-scale PM<sub>2.5</sub> mapping in an intra-urban area using crowdsourced monitoring" @default.
- W2907436345 cites W1968545881 @default.
- W2907436345 cites W1969692531 @default.
- W2907436345 cites W2008959035 @default.
- W2907436345 cites W2012037158 @default.
- W2907436345 cites W2039636725 @default.
- W2907436345 cites W2040316938 @default.
- W2907436345 cites W2062404613 @default.
- W2907436345 cites W2065947772 @default.
- W2907436345 cites W2069640186 @default.
- W2907436345 cites W2078411898 @default.
- W2907436345 cites W2084554826 @default.
- W2907436345 cites W2101982704 @default.
- W2907436345 cites W2108238605 @default.
- W2907436345 cites W2112139823 @default.
- W2907436345 cites W2112757220 @default.
- W2907436345 cites W2115569900 @default.
- W2907436345 cites W2118889363 @default.
- W2907436345 cites W2124713635 @default.
- W2907436345 cites W2141970008 @default.
- W2907436345 cites W2162358726 @default.
- W2907436345 cites W2195989979 @default.
- W2907436345 cites W2308284328 @default.
- W2907436345 cites W2463391426 @default.
- W2907436345 cites W2520806816 @default.
- W2907436345 cites W2525470824 @default.
- W2907436345 cites W2527677290 @default.
- W2907436345 cites W2588717217 @default.
- W2907436345 cites W2607350314 @default.
- W2907436345 cites W2621121878 @default.
- W2907436345 cites W2727805992 @default.
- W2907436345 cites W2731171009 @default.
- W2907436345 cites W2779159526 @default.
- W2907436345 cites W2781866001 @default.
- W2907436345 cites W2781898996 @default.
- W2907436345 cites W2782258050 @default.
- W2907436345 cites W2793148246 @default.
- W2907436345 cites W2793167459 @default.
- W2907436345 cites W2801553349 @default.
- W2907436345 cites W2808315302 @default.
- W2907436345 cites W2887788238 @default.
- W2907436345 cites W2899440314 @default.
- W2907436345 doi "https://doi.org/10.5194/amt-12-2933-2019" @default.
- W2907436345 hasPublicationYear "2019" @default.
- W2907436345 type Work @default.
- W2907436345 sameAs 2907436345 @default.
- W2907436345 citedByCount "16" @default.
- W2907436345 countsByYear W29074363452019 @default.
- W2907436345 countsByYear W29074363452020 @default.
- W2907436345 countsByYear W29074363452021 @default.
- W2907436345 countsByYear W29074363452022 @default.
- W2907436345 countsByYear W29074363452023 @default.
- W2907436345 crossrefType "journal-article" @default.
- W2907436345 hasAuthorship W2907436345A5012197151 @default.
- W2907436345 hasAuthorship W2907436345A5045350805 @default.
- W2907436345 hasAuthorship W2907436345A5058879833 @default.
- W2907436345 hasAuthorship W2907436345A5063628781 @default.
- W2907436345 hasAuthorship W2907436345A5066343293 @default.
- W2907436345 hasAuthorship W2907436345A5087803782 @default.
- W2907436345 hasBestOaLocation W29074363451 @default.
- W2907436345 hasConcept C105795698 @default.
- W2907436345 hasConcept C106131492 @default.
- W2907436345 hasConcept C121684516 @default.
- W2907436345 hasConcept C126314574 @default.
- W2907436345 hasConcept C137800194 @default.
- W2907436345 hasConcept C140779682 @default.
- W2907436345 hasConcept C153294291 @default.
- W2907436345 hasConcept C178790620 @default.
- W2907436345 hasConcept C185592680 @default.
- W2907436345 hasConcept C18903297 @default.
- W2907436345 hasConcept C205649164 @default.
- W2907436345 hasConcept C24245907 @default.
- W2907436345 hasConcept C2778755073 @default.
- W2907436345 hasConcept C3019654008 @default.
- W2907436345 hasConcept C31972630 @default.
- W2907436345 hasConcept C33923547 @default.
- W2907436345 hasConcept C39432304 @default.
- W2907436345 hasConcept C41008148 @default.
- W2907436345 hasConcept C502989409 @default.
- W2907436345 hasConcept C521259446 @default.
- W2907436345 hasConcept C559116025 @default.
- W2907436345 hasConcept C58640448 @default.
- W2907436345 hasConcept C81692654 @default.
- W2907436345 hasConcept C86803240 @default.
- W2907436345 hasConcept C87717796 @default.
- W2907436345 hasConceptScore W2907436345C105795698 @default.
- W2907436345 hasConceptScore W2907436345C106131492 @default.
- W2907436345 hasConceptScore W2907436345C121684516 @default.