Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907461504> ?p ?o ?g. }
- W2907461504 endingPage "26" @default.
- W2907461504 startingPage "9" @default.
- W2907461504 abstract "Computational fluid dynamics (CFD)-based wear predictions are computationally expensive to evaluate, even with a high-performance computing infrastructure. Thus, it is difficult to provide accurate local wear predictions in a timely manner. Data-driven approaches provide a more computationally efficient way to approximate the CFD wear predictions without running the actual CFD wear models. In this paper, a machine learning (ML) approach, termed WearGP, is presented to approximate the 3D local wear predictions, using numerical wear predictions from steady-state CFD simulations as training and testing datasets. The proposed framework is built on Gaussian process (GP) and utilized to predict wear in a much shorter time. The WearGP framework can be segmented into three stages. At the first stage, the training dataset is built by using a number of CFD simulations in the order of O(102). At the second stage, the data cleansing and data mining processes are performed, where the nodal wear solutions are extracted from the solution database to build a training dataset. At the third stage, the wear predictions are made, using trained GP models. Two CFD case studies including 3D slurry pump impeller and casing are used to demonstrate the WearGP framework, in which 144 training and 40 testing data points are used to train and test the proposed method, respectively. The numerical accuracy, computational efficiency and effectiveness between the WearGP framework and CFD wear model for both slurry pump impellers and casings are compared. It is shown that the WearGP framework can achieve highly accurate results that are comparable with the CFD results, with a relatively small size training dataset, with a computational time reduction on the order of 105 to 106." @default.
- W2907461504 created "2019-01-11" @default.
- W2907461504 creator A5000864838 @default.
- W2907461504 creator A5020404655 @default.
- W2907461504 creator A5054075161 @default.
- W2907461504 creator A5054333545 @default.
- W2907461504 creator A5059451359 @default.
- W2907461504 creator A5064659779 @default.
- W2907461504 date "2019-03-01" @default.
- W2907461504 modified "2023-10-01" @default.
- W2907461504 title "WearGP: A computationally efficient machine learning framework for local erosive wear predictions via nodal Gaussian processes" @default.
- W2907461504 cites W1502922572 @default.
- W2907461504 cites W1967635848 @default.
- W2907461504 cites W1985986137 @default.
- W2907461504 cites W1987524576 @default.
- W2907461504 cites W1988994140 @default.
- W2907461504 cites W2001356644 @default.
- W2907461504 cites W2003105834 @default.
- W2907461504 cites W2036609052 @default.
- W2907461504 cites W2045576306 @default.
- W2907461504 cites W2073897969 @default.
- W2907461504 cites W2079942837 @default.
- W2907461504 cites W2100610462 @default.
- W2907461504 cites W2115390563 @default.
- W2907461504 cites W2130819374 @default.
- W2907461504 cites W2192203593 @default.
- W2907461504 cites W2515505748 @default.
- W2907461504 cites W2588678793 @default.
- W2907461504 cites W2799685922 @default.
- W2907461504 cites W3125460488 @default.
- W2907461504 cites W849377165 @default.
- W2907461504 doi "https://doi.org/10.1016/j.wear.2018.12.081" @default.
- W2907461504 hasPublicationYear "2019" @default.
- W2907461504 type Work @default.
- W2907461504 sameAs 2907461504 @default.
- W2907461504 citedByCount "36" @default.
- W2907461504 countsByYear W29074615042019 @default.
- W2907461504 countsByYear W29074615042020 @default.
- W2907461504 countsByYear W29074615042021 @default.
- W2907461504 countsByYear W29074615042022 @default.
- W2907461504 countsByYear W29074615042023 @default.
- W2907461504 crossrefType "journal-article" @default.
- W2907461504 hasAuthorship W2907461504A5000864838 @default.
- W2907461504 hasAuthorship W2907461504A5020404655 @default.
- W2907461504 hasAuthorship W2907461504A5054075161 @default.
- W2907461504 hasAuthorship W2907461504A5054333545 @default.
- W2907461504 hasAuthorship W2907461504A5059451359 @default.
- W2907461504 hasAuthorship W2907461504A5064659779 @default.
- W2907461504 hasBestOaLocation W29074615041 @default.
- W2907461504 hasConcept C111919701 @default.
- W2907461504 hasConcept C119857082 @default.
- W2907461504 hasConcept C121332964 @default.
- W2907461504 hasConcept C127413603 @default.
- W2907461504 hasConcept C146978453 @default.
- W2907461504 hasConcept C153005164 @default.
- W2907461504 hasConcept C159985019 @default.
- W2907461504 hasConcept C1633027 @default.
- W2907461504 hasConcept C163716315 @default.
- W2907461504 hasConcept C192562407 @default.
- W2907461504 hasConcept C30399818 @default.
- W2907461504 hasConcept C41008148 @default.
- W2907461504 hasConcept C62520636 @default.
- W2907461504 hasConcept C78519656 @default.
- W2907461504 hasConcept C94293008 @default.
- W2907461504 hasConcept C98045186 @default.
- W2907461504 hasConceptScore W2907461504C111919701 @default.
- W2907461504 hasConceptScore W2907461504C119857082 @default.
- W2907461504 hasConceptScore W2907461504C121332964 @default.
- W2907461504 hasConceptScore W2907461504C127413603 @default.
- W2907461504 hasConceptScore W2907461504C146978453 @default.
- W2907461504 hasConceptScore W2907461504C153005164 @default.
- W2907461504 hasConceptScore W2907461504C159985019 @default.
- W2907461504 hasConceptScore W2907461504C1633027 @default.
- W2907461504 hasConceptScore W2907461504C163716315 @default.
- W2907461504 hasConceptScore W2907461504C192562407 @default.
- W2907461504 hasConceptScore W2907461504C30399818 @default.
- W2907461504 hasConceptScore W2907461504C41008148 @default.
- W2907461504 hasConceptScore W2907461504C62520636 @default.
- W2907461504 hasConceptScore W2907461504C78519656 @default.
- W2907461504 hasConceptScore W2907461504C94293008 @default.
- W2907461504 hasConceptScore W2907461504C98045186 @default.
- W2907461504 hasFunder F4320306076 @default.
- W2907461504 hasLocation W29074615041 @default.
- W2907461504 hasLocation W29074615042 @default.
- W2907461504 hasOpenAccess W2907461504 @default.
- W2907461504 hasPrimaryLocation W29074615041 @default.
- W2907461504 hasRelatedWork W1568341314 @default.
- W2907461504 hasRelatedWork W233139833 @default.
- W2907461504 hasRelatedWork W2350500785 @default.
- W2907461504 hasRelatedWork W251600243 @default.
- W2907461504 hasRelatedWork W2528796692 @default.
- W2907461504 hasRelatedWork W2875889505 @default.
- W2907461504 hasRelatedWork W2894766629 @default.
- W2907461504 hasRelatedWork W3101338559 @default.
- W2907461504 hasRelatedWork W4312275550 @default.
- W2907461504 hasRelatedWork W2182171168 @default.
- W2907461504 hasVolume "422-423" @default.
- W2907461504 isParatext "false" @default.