Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907466830> ?p ?o ?g. }
- W2907466830 endingPage "852" @default.
- W2907466830 startingPage "827" @default.
- W2907466830 abstract "In this work, we present a constrained batch-parallel Bayesian optimization (BO) framework, termed pBO-2GP-3B, to accelerate the optimization process for high-dimensional and computationally expensive problems, with known and unknown constraints. Two Gaussian processes (GPs) are simultaneously constructed: one models the objective function, whereas the other models the unknown constraints. The known constraint is penalized directly into the acquisition function. For every iteration, three batches are built in sequential order: the first two are the acquisition hallucination and the exploration batches for the objective GP, respectively, and the third one is the exploration batch for the classification GP. The pBO-2GP-3B optimization framework is demonstrated with three synthetic examples (2D and 6D), as well as a 33D multi-phase solid–liquid computational fluid dynamics (CFD) model for the design optimization of a centrifugal slurry pump impeller." @default.
- W2907466830 created "2019-01-11" @default.
- W2907466830 creator A5000864838 @default.
- W2907466830 creator A5049241488 @default.
- W2907466830 creator A5054075161 @default.
- W2907466830 creator A5054333545 @default.
- W2907466830 creator A5059451359 @default.
- W2907466830 creator A5064659779 @default.
- W2907466830 date "2019-04-01" @default.
- W2907466830 modified "2023-10-06" @default.
- W2907466830 title "pBO-2GP-3B: A batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics" @default.
- W2907466830 cites W135104305 @default.
- W2907466830 cites W1491420040 @default.
- W2907466830 cites W1510052597 @default.
- W2907466830 cites W1588959569 @default.
- W2907466830 cites W1596717185 @default.
- W2907466830 cites W1840389249 @default.
- W2907466830 cites W1968969471 @default.
- W2907466830 cites W1976355201 @default.
- W2907466830 cites W1988994140 @default.
- W2907466830 cites W1993377828 @default.
- W2907466830 cites W2003105834 @default.
- W2907466830 cites W2008056655 @default.
- W2907466830 cites W2026445404 @default.
- W2907466830 cites W2033197108 @default.
- W2907466830 cites W2036609052 @default.
- W2907466830 cites W2043662222 @default.
- W2907466830 cites W2061144551 @default.
- W2907466830 cites W2079942837 @default.
- W2907466830 cites W2093304293 @default.
- W2907466830 cites W2131116400 @default.
- W2907466830 cites W2138537392 @default.
- W2907466830 cites W2163286960 @default.
- W2907466830 cites W2165558283 @default.
- W2907466830 cites W2166566250 @default.
- W2907466830 cites W2192203593 @default.
- W2907466830 cites W2539544406 @default.
- W2907466830 cites W2739485916 @default.
- W2907466830 cites W2749552960 @default.
- W2907466830 cites W2911964244 @default.
- W2907466830 doi "https://doi.org/10.1016/j.cma.2018.12.033" @default.
- W2907466830 hasPublicationYear "2019" @default.
- W2907466830 type Work @default.
- W2907466830 sameAs 2907466830 @default.
- W2907466830 citedByCount "51" @default.
- W2907466830 countsByYear W29074668302019 @default.
- W2907466830 countsByYear W29074668302020 @default.
- W2907466830 countsByYear W29074668302021 @default.
- W2907466830 countsByYear W29074668302022 @default.
- W2907466830 countsByYear W29074668302023 @default.
- W2907466830 crossrefType "journal-article" @default.
- W2907466830 hasAuthorship W2907466830A5000864838 @default.
- W2907466830 hasAuthorship W2907466830A5049241488 @default.
- W2907466830 hasAuthorship W2907466830A5054075161 @default.
- W2907466830 hasAuthorship W2907466830A5054333545 @default.
- W2907466830 hasAuthorship W2907466830A5059451359 @default.
- W2907466830 hasAuthorship W2907466830A5064659779 @default.
- W2907466830 hasBestOaLocation W29074668301 @default.
- W2907466830 hasConcept C107673813 @default.
- W2907466830 hasConcept C11413529 @default.
- W2907466830 hasConcept C121332964 @default.
- W2907466830 hasConcept C126255220 @default.
- W2907466830 hasConcept C127413603 @default.
- W2907466830 hasConcept C14036430 @default.
- W2907466830 hasConcept C146978453 @default.
- W2907466830 hasConcept C153005164 @default.
- W2907466830 hasConcept C154945302 @default.
- W2907466830 hasConcept C1633027 @default.
- W2907466830 hasConcept C163716315 @default.
- W2907466830 hasConcept C2524010 @default.
- W2907466830 hasConcept C2776036281 @default.
- W2907466830 hasConcept C2778049539 @default.
- W2907466830 hasConcept C33923547 @default.
- W2907466830 hasConcept C41008148 @default.
- W2907466830 hasConcept C61326573 @default.
- W2907466830 hasConcept C62520636 @default.
- W2907466830 hasConcept C78458016 @default.
- W2907466830 hasConcept C78519656 @default.
- W2907466830 hasConcept C86803240 @default.
- W2907466830 hasConceptScore W2907466830C107673813 @default.
- W2907466830 hasConceptScore W2907466830C11413529 @default.
- W2907466830 hasConceptScore W2907466830C121332964 @default.
- W2907466830 hasConceptScore W2907466830C126255220 @default.
- W2907466830 hasConceptScore W2907466830C127413603 @default.
- W2907466830 hasConceptScore W2907466830C14036430 @default.
- W2907466830 hasConceptScore W2907466830C146978453 @default.
- W2907466830 hasConceptScore W2907466830C153005164 @default.
- W2907466830 hasConceptScore W2907466830C154945302 @default.
- W2907466830 hasConceptScore W2907466830C1633027 @default.
- W2907466830 hasConceptScore W2907466830C163716315 @default.
- W2907466830 hasConceptScore W2907466830C2524010 @default.
- W2907466830 hasConceptScore W2907466830C2776036281 @default.
- W2907466830 hasConceptScore W2907466830C2778049539 @default.
- W2907466830 hasConceptScore W2907466830C33923547 @default.
- W2907466830 hasConceptScore W2907466830C41008148 @default.
- W2907466830 hasConceptScore W2907466830C61326573 @default.
- W2907466830 hasConceptScore W2907466830C62520636 @default.
- W2907466830 hasConceptScore W2907466830C78458016 @default.