Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907486534> ?p ?o ?g. }
- W2907486534 endingPage "42" @default.
- W2907486534 startingPage "42" @default.
- W2907486534 abstract "Frequency analysis of streamflow is critical for water-resources system planning, water conservancy projects and the mitigation of hydrological extremes events. In this study, a maximum entropy-Archimedean copula-based Bayesian network (MECBN) method has been proposed for frequency analysis of monthly streamflow in the Kaidu River Basin, which integrates the maximum entropy-Archimedean copula (MEAC) and Bayesian network methods into a general framework. MECBN is effective for representing the uncertainties that exist in model representation, preserving the distributional characteristics of streamflow records and addressing the correlation structure between streamflow pairs. Application to the Kaidu River Basin shows a good performance of MECBN in describing the historical data of this basin in China. The results indicate that the interactions between two adjacent monthly streamflow pairs are non-linear. There is upper tail dependence between monthly streamflow pairs. The dependence coefficients including Spearman’s rho, Kendall’s tau, and the upper tail dependence coefficient are in inverse proportion of monthly streamflow values in the Kaidu River Basin, due to the fact that other factors (i.e., rainfall, snow melting, evapotranspiration rate and requirement of water use) provide more contributions to the streamflow in the flooding season. These findings can be used for providing vital information in the prevention and control of hydrological extremes and to further water resources planning in Kaidu River Basin." @default.
- W2907486534 created "2019-01-11" @default.
- W2907486534 creator A5014716343 @default.
- W2907486534 creator A5041682448 @default.
- W2907486534 creator A5043667195 @default.
- W2907486534 creator A5057075801 @default.
- W2907486534 creator A5067331026 @default.
- W2907486534 creator A5083536113 @default.
- W2907486534 creator A5084333096 @default.
- W2907486534 date "2018-12-27" @default.
- W2907486534 modified "2023-09-25" @default.
- W2907486534 title "Development of a Maximum Entropy-Archimedean Copula-Based Bayesian Network Method for Streamflow Frequency Analysis—A Case Study of the Kaidu River Basin, China" @default.
- W2907486534 cites W1982166561 @default.
- W2907486534 cites W1988576913 @default.
- W2907486534 cites W2016099795 @default.
- W2907486534 cites W2024252526 @default.
- W2907486534 cites W2027776806 @default.
- W2907486534 cites W2039240409 @default.
- W2907486534 cites W2045759663 @default.
- W2907486534 cites W2060249712 @default.
- W2907486534 cites W2070594276 @default.
- W2907486534 cites W2070783046 @default.
- W2907486534 cites W2072386594 @default.
- W2907486534 cites W2081652617 @default.
- W2907486534 cites W2084117721 @default.
- W2907486534 cites W2086298205 @default.
- W2907486534 cites W2087062540 @default.
- W2907486534 cites W2089230464 @default.
- W2907486534 cites W2098280243 @default.
- W2907486534 cites W2129540265 @default.
- W2907486534 cites W2148005090 @default.
- W2907486534 cites W2148942592 @default.
- W2907486534 cites W2162316794 @default.
- W2907486534 cites W2206258127 @default.
- W2907486534 cites W2258957699 @default.
- W2907486534 cites W2318288926 @default.
- W2907486534 cites W2464333608 @default.
- W2907486534 cites W2519406890 @default.
- W2907486534 cites W2562354060 @default.
- W2907486534 cites W2566718690 @default.
- W2907486534 cites W2585452379 @default.
- W2907486534 cites W2614734067 @default.
- W2907486534 cites W2619854407 @default.
- W2907486534 cites W2888592927 @default.
- W2907486534 cites W2891027659 @default.
- W2907486534 cites W395787286 @default.
- W2907486534 cites W4255375128 @default.
- W2907486534 doi "https://doi.org/10.3390/w11010042" @default.
- W2907486534 hasPublicationYear "2018" @default.
- W2907486534 type Work @default.
- W2907486534 sameAs 2907486534 @default.
- W2907486534 citedByCount "11" @default.
- W2907486534 countsByYear W29074865342019 @default.
- W2907486534 countsByYear W29074865342020 @default.
- W2907486534 countsByYear W29074865342022 @default.
- W2907486534 countsByYear W29074865342023 @default.
- W2907486534 crossrefType "journal-article" @default.
- W2907486534 hasAuthorship W2907486534A5014716343 @default.
- W2907486534 hasAuthorship W2907486534A5041682448 @default.
- W2907486534 hasAuthorship W2907486534A5043667195 @default.
- W2907486534 hasAuthorship W2907486534A5057075801 @default.
- W2907486534 hasAuthorship W2907486534A5067331026 @default.
- W2907486534 hasAuthorship W2907486534A5083536113 @default.
- W2907486534 hasAuthorship W2907486534A5084333096 @default.
- W2907486534 hasBestOaLocation W29074865341 @default.
- W2907486534 hasConcept C105795698 @default.
- W2907486534 hasConcept C109007969 @default.
- W2907486534 hasConcept C114793014 @default.
- W2907486534 hasConcept C126645576 @default.
- W2907486534 hasConcept C127313418 @default.
- W2907486534 hasConcept C149782125 @default.
- W2907486534 hasConcept C17618745 @default.
- W2907486534 hasConcept C176783924 @default.
- W2907486534 hasConcept C183195422 @default.
- W2907486534 hasConcept C187320778 @default.
- W2907486534 hasConcept C18903297 @default.
- W2907486534 hasConcept C205649164 @default.
- W2907486534 hasConcept C33923547 @default.
- W2907486534 hasConcept C39432304 @default.
- W2907486534 hasConcept C49204034 @default.
- W2907486534 hasConcept C53739315 @default.
- W2907486534 hasConcept C58640448 @default.
- W2907486534 hasConcept C76886044 @default.
- W2907486534 hasConcept C86803240 @default.
- W2907486534 hasConcept C9679016 @default.
- W2907486534 hasConceptScore W2907486534C105795698 @default.
- W2907486534 hasConceptScore W2907486534C109007969 @default.
- W2907486534 hasConceptScore W2907486534C114793014 @default.
- W2907486534 hasConceptScore W2907486534C126645576 @default.
- W2907486534 hasConceptScore W2907486534C127313418 @default.
- W2907486534 hasConceptScore W2907486534C149782125 @default.
- W2907486534 hasConceptScore W2907486534C17618745 @default.
- W2907486534 hasConceptScore W2907486534C176783924 @default.
- W2907486534 hasConceptScore W2907486534C183195422 @default.
- W2907486534 hasConceptScore W2907486534C187320778 @default.
- W2907486534 hasConceptScore W2907486534C18903297 @default.
- W2907486534 hasConceptScore W2907486534C205649164 @default.
- W2907486534 hasConceptScore W2907486534C33923547 @default.