Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907491393> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2907491393 abstract "Accurate and robust monitoring, tracking and prognosis of machine performance degradation provides the technical basis for realizing predictive maintenance scheduling and improved operational reliability. To cope with nonlinearity and non-homogeneity that are typically seen in performance degradation., this paper presents a prognostic modeling technique based on the Lévy process, which expresses the variation of machine performance as an accumulation of successive and jump increments. Specifically, the proposed Lévy model is divided into two terms to address two types of degradations: a linear Brownian motion (LBM) model to describe gradual deterioration with time-varying rates, and a non-homogenous compound Poisson process (CPP) model to describe transient performance changes due to abrupt fault occurrence. The time-varying deterioration rate is captured in LBM by a stochastic drifting coefficient that is assumed to follow a Gaussian distribution, besides a diffusion term that accounts for temporal uncertainties and degradation-to-degradation variations. The nonhomogeneous occurrence rate of transient changes is captured in CPP by a Poisson distribution with a time-varying jump intensity, with the sizes of transient changes assumed to follow a Gaussian distribution. By calculating the moments of the characteristic function of the proposed Lévy model, explicit expressions for the probability distributions of predicted degradation and remaining useful life (RUL) have been derived. To estimate the time-varying parameters in the Lévy model, Markov Chain Monte Carlo (MCMC) as a batch estimation technique has been investigated. The proposed prognostic modeling technique is evaluated using rolling bearing run-to-failure tests." @default.
- W2907491393 created "2019-01-11" @default.
- W2907491393 creator A5049078993 @default.
- W2907491393 creator A5060566070 @default.
- W2907491393 date "2018-10-01" @default.
- W2907491393 modified "2023-10-16" @default.
- W2907491393 title "Lévy Process-Based Stochastic Modeling for Machine Performance Degradation Prognosis" @default.
- W2907491393 cites W1969150846 @default.
- W2907491393 cites W1977844956 @default.
- W2907491393 cites W1989424454 @default.
- W2907491393 cites W1995723008 @default.
- W2907491393 cites W2004839758 @default.
- W2907491393 cites W2006287597 @default.
- W2907491393 cites W2012028249 @default.
- W2907491393 cites W2022032527 @default.
- W2907491393 cites W2022131151 @default.
- W2907491393 cites W2052829147 @default.
- W2907491393 cites W2061659083 @default.
- W2907491393 cites W2096731208 @default.
- W2907491393 cites W2126445794 @default.
- W2907491393 cites W2130416410 @default.
- W2907491393 cites W2137951154 @default.
- W2907491393 cites W2142724780 @default.
- W2907491393 cites W2269447449 @default.
- W2907491393 cites W2402602303 @default.
- W2907491393 cites W2590632384 @default.
- W2907491393 cites W2591645937 @default.
- W2907491393 cites W2592533002 @default.
- W2907491393 cites W2608571722 @default.
- W2907491393 cites W2608639854 @default.
- W2907491393 cites W2748902178 @default.
- W2907491393 cites W2749949798 @default.
- W2907491393 cites W2791494814 @default.
- W2907491393 cites W856269280 @default.
- W2907491393 doi "https://doi.org/10.1109/iecon.2018.8592928" @default.
- W2907491393 hasPublicationYear "2018" @default.
- W2907491393 type Work @default.
- W2907491393 sameAs 2907491393 @default.
- W2907491393 citedByCount "1" @default.
- W2907491393 countsByYear W29074913932023 @default.
- W2907491393 crossrefType "proceedings-article" @default.
- W2907491393 hasAuthorship W2907491393A5049078993 @default.
- W2907491393 hasAuthorship W2907491393A5060566070 @default.
- W2907491393 hasConcept C100906024 @default.
- W2907491393 hasConcept C105795698 @default.
- W2907491393 hasConcept C11413529 @default.
- W2907491393 hasConcept C121332964 @default.
- W2907491393 hasConcept C154945302 @default.
- W2907491393 hasConcept C2775924081 @default.
- W2907491393 hasConcept C2780695682 @default.
- W2907491393 hasConcept C28826006 @default.
- W2907491393 hasConcept C33923547 @default.
- W2907491393 hasConcept C41008148 @default.
- W2907491393 hasConcept C47446073 @default.
- W2907491393 hasConcept C62520636 @default.
- W2907491393 hasConcept C79495835 @default.
- W2907491393 hasConceptScore W2907491393C100906024 @default.
- W2907491393 hasConceptScore W2907491393C105795698 @default.
- W2907491393 hasConceptScore W2907491393C11413529 @default.
- W2907491393 hasConceptScore W2907491393C121332964 @default.
- W2907491393 hasConceptScore W2907491393C154945302 @default.
- W2907491393 hasConceptScore W2907491393C2775924081 @default.
- W2907491393 hasConceptScore W2907491393C2780695682 @default.
- W2907491393 hasConceptScore W2907491393C28826006 @default.
- W2907491393 hasConceptScore W2907491393C33923547 @default.
- W2907491393 hasConceptScore W2907491393C41008148 @default.
- W2907491393 hasConceptScore W2907491393C47446073 @default.
- W2907491393 hasConceptScore W2907491393C62520636 @default.
- W2907491393 hasConceptScore W2907491393C79495835 @default.
- W2907491393 hasLocation W29074913931 @default.
- W2907491393 hasOpenAccess W2907491393 @default.
- W2907491393 hasPrimaryLocation W29074913931 @default.
- W2907491393 hasRelatedWork W1488915263 @default.
- W2907491393 hasRelatedWork W1967543778 @default.
- W2907491393 hasRelatedWork W1971380437 @default.
- W2907491393 hasRelatedWork W1982160337 @default.
- W2907491393 hasRelatedWork W2351666715 @default.
- W2907491393 hasRelatedWork W2369384937 @default.
- W2907491393 hasRelatedWork W2379968129 @default.
- W2907491393 hasRelatedWork W2382902960 @default.
- W2907491393 hasRelatedWork W2757332726 @default.
- W2907491393 hasRelatedWork W3105647332 @default.
- W2907491393 isParatext "false" @default.
- W2907491393 isRetracted "false" @default.
- W2907491393 magId "2907491393" @default.
- W2907491393 workType "article" @default.