Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907496897> ?p ?o ?g. }
- W2907496897 abstract "Recommendation in the modern world is not only about capturing the interaction between users and items, but also about understanding the relationship between items. Besides improving the quality of recommendation, it enables the generation of candidate items that can serve as substitutes and supplements of another item. For example, when recommending Xbox, PS4 could be a logical substitute and the supplements could be items such as game controllers, surround system, and travel case. Therefore, given a network of items, our objective is to learn their content features such that they explain the relationship between items in terms of substitutes and supplements. To achieve this, we propose a generative deep learning model that links two variational autoencoders using a connector neural network to create Linked Variational Autoencoder (LVA). LVA learns the latent features of items by conditioning on the observed relationship between items. Using a rigorous series of experiments, we show that LVA significantly outperforms other representative and state-of-the-art baseline methods in terms of prediction accuracy. We then extend LVA by incorporating collaborative filtering (CF) to create CLVA that captures the implicit relationship between users and items. By comparing CLVA with LVA we show that inducing CF-based features greatly improve the recommendation quality of substitutable and supplementary items on a user level." @default.
- W2907496897 created "2019-01-11" @default.
- W2907496897 creator A5000202397 @default.
- W2907496897 creator A5011048500 @default.
- W2907496897 creator A5038252554 @default.
- W2907496897 creator A5058670321 @default.
- W2907496897 date "2019-01-30" @default.
- W2907496897 modified "2023-09-23" @default.
- W2907496897 title "Linked Variational AutoEncoders for Inferring Substitutable and Supplementary Items" @default.
- W2907496897 cites W1880262756 @default.
- W2907496897 cites W1967959545 @default.
- W2907496897 cites W1971432354 @default.
- W2907496897 cites W1991418309 @default.
- W2907496897 cites W2025605741 @default.
- W2907496897 cites W2044429219 @default.
- W2907496897 cites W2061873838 @default.
- W2907496897 cites W2076063813 @default.
- W2907496897 cites W2096110600 @default.
- W2907496897 cites W2105953200 @default.
- W2907496897 cites W2130978632 @default.
- W2907496897 cites W2135790056 @default.
- W2907496897 cites W2145677303 @default.
- W2907496897 cites W2157881433 @default.
- W2907496897 cites W2604438604 @default.
- W2907496897 cites W2604682274 @default.
- W2907496897 cites W2604851402 @default.
- W2907496897 cites W2605350416 @default.
- W2907496897 cites W2725606191 @default.
- W2907496897 cites W2782696945 @default.
- W2907496897 cites W2788837479 @default.
- W2907496897 cites W2963085847 @default.
- W2907496897 cites W2963857660 @default.
- W2907496897 cites W2997574889 @default.
- W2907496897 cites W3098867666 @default.
- W2907496897 cites W3101023724 @default.
- W2907496897 doi "https://doi.org/10.1145/3289600.3290963" @default.
- W2907496897 hasPublicationYear "2019" @default.
- W2907496897 type Work @default.
- W2907496897 sameAs 2907496897 @default.
- W2907496897 citedByCount "23" @default.
- W2907496897 countsByYear W29074968972019 @default.
- W2907496897 countsByYear W29074968972020 @default.
- W2907496897 countsByYear W29074968972021 @default.
- W2907496897 countsByYear W29074968972022 @default.
- W2907496897 countsByYear W29074968972023 @default.
- W2907496897 crossrefType "proceedings-article" @default.
- W2907496897 hasAuthorship W2907496897A5000202397 @default.
- W2907496897 hasAuthorship W2907496897A5011048500 @default.
- W2907496897 hasAuthorship W2907496897A5038252554 @default.
- W2907496897 hasAuthorship W2907496897A5058670321 @default.
- W2907496897 hasConcept C101738243 @default.
- W2907496897 hasConcept C108583219 @default.
- W2907496897 hasConcept C111368507 @default.
- W2907496897 hasConcept C111472728 @default.
- W2907496897 hasConcept C119857082 @default.
- W2907496897 hasConcept C12725497 @default.
- W2907496897 hasConcept C127313418 @default.
- W2907496897 hasConcept C138885662 @default.
- W2907496897 hasConcept C154945302 @default.
- W2907496897 hasConcept C167966045 @default.
- W2907496897 hasConcept C204321447 @default.
- W2907496897 hasConcept C21569690 @default.
- W2907496897 hasConcept C23123220 @default.
- W2907496897 hasConcept C2779530757 @default.
- W2907496897 hasConcept C39890363 @default.
- W2907496897 hasConcept C41008148 @default.
- W2907496897 hasConcept C50644808 @default.
- W2907496897 hasConcept C557471498 @default.
- W2907496897 hasConceptScore W2907496897C101738243 @default.
- W2907496897 hasConceptScore W2907496897C108583219 @default.
- W2907496897 hasConceptScore W2907496897C111368507 @default.
- W2907496897 hasConceptScore W2907496897C111472728 @default.
- W2907496897 hasConceptScore W2907496897C119857082 @default.
- W2907496897 hasConceptScore W2907496897C12725497 @default.
- W2907496897 hasConceptScore W2907496897C127313418 @default.
- W2907496897 hasConceptScore W2907496897C138885662 @default.
- W2907496897 hasConceptScore W2907496897C154945302 @default.
- W2907496897 hasConceptScore W2907496897C167966045 @default.
- W2907496897 hasConceptScore W2907496897C204321447 @default.
- W2907496897 hasConceptScore W2907496897C21569690 @default.
- W2907496897 hasConceptScore W2907496897C23123220 @default.
- W2907496897 hasConceptScore W2907496897C2779530757 @default.
- W2907496897 hasConceptScore W2907496897C39890363 @default.
- W2907496897 hasConceptScore W2907496897C41008148 @default.
- W2907496897 hasConceptScore W2907496897C50644808 @default.
- W2907496897 hasConceptScore W2907496897C557471498 @default.
- W2907496897 hasLocation W29074968971 @default.
- W2907496897 hasOpenAccess W2907496897 @default.
- W2907496897 hasPrimaryLocation W29074968971 @default.
- W2907496897 hasRelatedWork W2527569769 @default.
- W2907496897 hasRelatedWork W2896257562 @default.
- W2907496897 hasRelatedWork W2905455327 @default.
- W2907496897 hasRelatedWork W2907496897 @default.
- W2907496897 hasRelatedWork W2944420298 @default.
- W2907496897 hasRelatedWork W2951326654 @default.
- W2907496897 hasRelatedWork W2964316708 @default.
- W2907496897 hasRelatedWork W3092989768 @default.
- W2907496897 hasRelatedWork W3093328302 @default.
- W2907496897 hasRelatedWork W3170046637 @default.
- W2907496897 isParatext "false" @default.