Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907509110> ?p ?o ?g. }
- W2907509110 endingPage "387" @default.
- W2907509110 startingPage "367" @default.
- W2907509110 abstract "Classical data mining algorithms are considered inadequate to manage the volume, variety, velocity, and veracity aspects of big data. The advent of a number of open-source cluster-computing frameworks has opened new interesting perspectives for handling the volume and velocity features. In this context, thanks to their capability of coping with vague and imprecise information, distributed fuzzy models appear to be particularly suitable for handling the variety and veracity features of big data. Moreover, the interpretability of fuzzy models may assume a particular relevance in the context of big data mining. In this work, we propose a novel approach for generating, out of big data, a set of fuzzy rule–based classifiers characterized by different optimal trade-offs between accuracy and interpretability. We extend a state-of-the-art distributed multi-objective evolutionary learning scheme, implemented under the Apache Spark environment. In particular, we exploit a recently proposed distributed fuzzy decision tree learning approach for generating an initial rule base that serves as input to the evolutionary process. Furthermore, we integrate the evolutionary learning scheme with an ad hoc strategy for the granularity learning of the fuzzy partitions, along with the optimization of both the rule base and the fuzzy set parameters. Experimental investigations show that the proposed approach is able to generate fuzzy rule–based classifiers that are significantly less complex than the ones generated by the original multi-objective evolutionary learning scheme, while keeping the same accuracy levels." @default.
- W2907509110 created "2019-01-11" @default.
- W2907509110 creator A5007774813 @default.
- W2907509110 creator A5050435146 @default.
- W2907509110 creator A5057031606 @default.
- W2907509110 creator A5063324971 @default.
- W2907509110 date "2019-01-04" @default.
- W2907509110 modified "2023-10-18" @default.
- W2907509110 title "Optimizing Partition Granularity, Membership Function Parameters, and Rule Bases of Fuzzy Classifiers for Big Data by a Multi-objective Evolutionary Approach" @default.
- W2907509110 cites W1485408073 @default.
- W2907509110 cites W1553373771 @default.
- W2907509110 cites W1573698127 @default.
- W2907509110 cites W1965563268 @default.
- W2907509110 cites W1966772365 @default.
- W2907509110 cites W1977904727 @default.
- W2907509110 cites W1989160712 @default.
- W2907509110 cites W2002368650 @default.
- W2907509110 cites W2003322225 @default.
- W2907509110 cites W2011523679 @default.
- W2907509110 cites W2016086965 @default.
- W2907509110 cites W2018401509 @default.
- W2907509110 cites W2040263621 @default.
- W2907509110 cites W2042551229 @default.
- W2907509110 cites W2053900989 @default.
- W2907509110 cites W2109518982 @default.
- W2907509110 cites W2122702721 @default.
- W2907509110 cites W2125621954 @default.
- W2907509110 cites W2128964655 @default.
- W2907509110 cites W2135074661 @default.
- W2907509110 cites W2141083048 @default.
- W2907509110 cites W2145611520 @default.
- W2907509110 cites W2146531337 @default.
- W2907509110 cites W2156773695 @default.
- W2907509110 cites W2173213060 @default.
- W2907509110 cites W2176311487 @default.
- W2907509110 cites W2342457036 @default.
- W2907509110 cites W2414667196 @default.
- W2907509110 cites W2432436793 @default.
- W2907509110 cites W2468392024 @default.
- W2907509110 cites W2505098904 @default.
- W2907509110 cites W2538418746 @default.
- W2907509110 cites W2553500715 @default.
- W2907509110 cites W2565966100 @default.
- W2907509110 cites W2576683119 @default.
- W2907509110 cites W2579555219 @default.
- W2907509110 cites W2579763471 @default.
- W2907509110 cites W2586397859 @default.
- W2907509110 cites W2588941434 @default.
- W2907509110 cites W2592314679 @default.
- W2907509110 cites W2595285209 @default.
- W2907509110 cites W2600775919 @default.
- W2907509110 cites W2734283703 @default.
- W2907509110 cites W2735540554 @default.
- W2907509110 cites W2750427532 @default.
- W2907509110 cites W2750481789 @default.
- W2907509110 cites W2756790431 @default.
- W2907509110 cites W2764005395 @default.
- W2907509110 cites W2783596173 @default.
- W2907509110 cites W2784834174 @default.
- W2907509110 cites W2792293166 @default.
- W2907509110 cites W2810581848 @default.
- W2907509110 cites W2886405804 @default.
- W2907509110 cites W2887796994 @default.
- W2907509110 cites W416578099 @default.
- W2907509110 cites W4230243563 @default.
- W2907509110 cites W4230737036 @default.
- W2907509110 doi "https://doi.org/10.1007/s12559-018-9613-6" @default.
- W2907509110 hasPublicationYear "2019" @default.
- W2907509110 type Work @default.
- W2907509110 sameAs 2907509110 @default.
- W2907509110 citedByCount "11" @default.
- W2907509110 countsByYear W29075091102020 @default.
- W2907509110 countsByYear W29075091102021 @default.
- W2907509110 countsByYear W29075091102022 @default.
- W2907509110 crossrefType "journal-article" @default.
- W2907509110 hasAuthorship W2907509110A5007774813 @default.
- W2907509110 hasAuthorship W2907509110A5050435146 @default.
- W2907509110 hasAuthorship W2907509110A5057031606 @default.
- W2907509110 hasAuthorship W2907509110A5063324971 @default.
- W2907509110 hasBestOaLocation W29075091102 @default.
- W2907509110 hasConcept C105902424 @default.
- W2907509110 hasConcept C119857082 @default.
- W2907509110 hasConcept C124101348 @default.
- W2907509110 hasConcept C154945302 @default.
- W2907509110 hasConcept C159149176 @default.
- W2907509110 hasConcept C195975749 @default.
- W2907509110 hasConcept C2780049643 @default.
- W2907509110 hasConcept C2781067378 @default.
- W2907509110 hasConcept C29470771 @default.
- W2907509110 hasConcept C41008148 @default.
- W2907509110 hasConcept C42011625 @default.
- W2907509110 hasConcept C58166 @default.
- W2907509110 hasConcept C75684735 @default.
- W2907509110 hasConceptScore W2907509110C105902424 @default.
- W2907509110 hasConceptScore W2907509110C119857082 @default.
- W2907509110 hasConceptScore W2907509110C124101348 @default.
- W2907509110 hasConceptScore W2907509110C154945302 @default.
- W2907509110 hasConceptScore W2907509110C159149176 @default.