Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907598674> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2907598674 endingPage "1170" @default.
- W2907598674 startingPage "1163" @default.
- W2907598674 abstract "Vehicle classification is a trending area of research in Intelligent Transport System. Vehicle Recognition can help traffic policy makers, public safety organizations, insurance companies, etc. It can assist in various applications like automatic toll collection, emissions/pollution estimation, traffic modelling, etc. Many methods, both infrastructure-based and infrastructureless have been proposed for vehicle classification but they have certain disadvantages. In this paper, we have explored the possibility to use off the shelf Convolutional Neural Network (CNN) features for commuter vehicle classification using acoustics. To extract features from acoustic recordings taken from the vehicle, a simple CNN is designed. These features are used to classify vehicles in five main categories car, bus, plane, train, and three-wheeler using Support Vector Machine (SVM). This approach is tested on dataset having 4789 recordings and gives good accuracy as compared to simple Mel Frequency Cepstral Coefficients (MFCC) feature based deep learning and machine learning approach." @default.
- W2907598674 created "2019-01-11" @default.
- W2907598674 creator A5048987624 @default.
- W2907598674 creator A5052524379 @default.
- W2907598674 creator A5054152952 @default.
- W2907598674 creator A5090284272 @default.
- W2907598674 date "2019-01-01" @default.
- W2907598674 modified "2023-10-17" @default.
- W2907598674 title "An Off the Shelf CNN Features Based Approach for Vehicle Classification Using Acoustics" @default.
- W2907598674 cites W1967627620 @default.
- W2907598674 cites W1967807710 @default.
- W2907598674 cites W2024415913 @default.
- W2907598674 cites W2027636547 @default.
- W2907598674 cites W2076905463 @default.
- W2907598674 cites W2091634944 @default.
- W2907598674 cites W2093685172 @default.
- W2907598674 cites W2095009735 @default.
- W2907598674 cites W2097612790 @default.
- W2907598674 cites W2114508695 @default.
- W2907598674 cites W2130251794 @default.
- W2907598674 cites W2157588821 @default.
- W2907598674 cites W2588815358 @default.
- W2907598674 cites W2794595264 @default.
- W2907598674 cites W4249554892 @default.
- W2907598674 cites W1994743638 @default.
- W2907598674 doi "https://doi.org/10.1007/978-3-030-00665-5_110" @default.
- W2907598674 hasPublicationYear "2019" @default.
- W2907598674 type Work @default.
- W2907598674 sameAs 2907598674 @default.
- W2907598674 citedByCount "3" @default.
- W2907598674 countsByYear W29075986742021 @default.
- W2907598674 countsByYear W29075986742022 @default.
- W2907598674 countsByYear W29075986742023 @default.
- W2907598674 crossrefType "book-chapter" @default.
- W2907598674 hasAuthorship W2907598674A5048987624 @default.
- W2907598674 hasAuthorship W2907598674A5052524379 @default.
- W2907598674 hasAuthorship W2907598674A5054152952 @default.
- W2907598674 hasAuthorship W2907598674A5090284272 @default.
- W2907598674 hasConcept C119857082 @default.
- W2907598674 hasConcept C12267149 @default.
- W2907598674 hasConcept C127413603 @default.
- W2907598674 hasConcept C138885662 @default.
- W2907598674 hasConcept C151989614 @default.
- W2907598674 hasConcept C153180895 @default.
- W2907598674 hasConcept C154945302 @default.
- W2907598674 hasConcept C2776401178 @default.
- W2907598674 hasConcept C28490314 @default.
- W2907598674 hasConcept C41008148 @default.
- W2907598674 hasConcept C41895202 @default.
- W2907598674 hasConcept C50644808 @default.
- W2907598674 hasConcept C52622490 @default.
- W2907598674 hasConcept C81363708 @default.
- W2907598674 hasConceptScore W2907598674C119857082 @default.
- W2907598674 hasConceptScore W2907598674C12267149 @default.
- W2907598674 hasConceptScore W2907598674C127413603 @default.
- W2907598674 hasConceptScore W2907598674C138885662 @default.
- W2907598674 hasConceptScore W2907598674C151989614 @default.
- W2907598674 hasConceptScore W2907598674C153180895 @default.
- W2907598674 hasConceptScore W2907598674C154945302 @default.
- W2907598674 hasConceptScore W2907598674C2776401178 @default.
- W2907598674 hasConceptScore W2907598674C28490314 @default.
- W2907598674 hasConceptScore W2907598674C41008148 @default.
- W2907598674 hasConceptScore W2907598674C41895202 @default.
- W2907598674 hasConceptScore W2907598674C50644808 @default.
- W2907598674 hasConceptScore W2907598674C52622490 @default.
- W2907598674 hasConceptScore W2907598674C81363708 @default.
- W2907598674 hasLocation W29075986741 @default.
- W2907598674 hasOpenAccess W2907598674 @default.
- W2907598674 hasPrimaryLocation W29075986741 @default.
- W2907598674 hasRelatedWork W2019475500 @default.
- W2907598674 hasRelatedWork W2138847091 @default.
- W2907598674 hasRelatedWork W2144773493 @default.
- W2907598674 hasRelatedWork W2349769824 @default.
- W2907598674 hasRelatedWork W2422472940 @default.
- W2907598674 hasRelatedWork W2548162870 @default.
- W2907598674 hasRelatedWork W2548511587 @default.
- W2907598674 hasRelatedWork W2786428026 @default.
- W2907598674 hasRelatedWork W4293232884 @default.
- W2907598674 hasRelatedWork W4317383455 @default.
- W2907598674 isParatext "false" @default.
- W2907598674 isRetracted "false" @default.
- W2907598674 magId "2907598674" @default.
- W2907598674 workType "book-chapter" @default.