Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907601597> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2907601597 abstract "In recent years, belief models, such as subjective logic (SL) and collective subjective logic (CSL), have been developed to model an opinion consisting of belief, disbelief, and uncertainty. However, these belief models are designed based on either predefined operators (e.g., discounting and consensus operators) or distribution assumptions (e.g., Markov random fields or MRFs) that are incapable of capturing the heterogeneity of the uncertainty information in large-scale network data. In this paper, we propose a general framework to model and infer heterogeneous uncertainty information in network data based on the state-of-the-art graph convolutional neural networks (GCN). This work is the first that employs a GCN to model the heterogeneous probability density function (PDF) of node-level variables. And then we project this PDF function into a subspace of PDF functions defined based on node-level opinions via knowledge distillation, which provides an effective prediction of the unknown opinion of some nodes based on the observed opinions of the other nodes. Through the extensive simulation experiments, we show that our proposed approach performs better than SL and CSL in predicting unknown opinions when using two road traffic datasets for the validation of the tested algorithms." @default.
- W2907601597 created "2019-01-11" @default.
- W2907601597 creator A5011649304 @default.
- W2907601597 creator A5028273608 @default.
- W2907601597 creator A5036221931 @default.
- W2907601597 date "2018-10-01" @default.
- W2907601597 modified "2023-09-25" @default.
- W2907601597 title "Uncertainty-Based Opinion Inference on Network Data Using Graph Convolutional Neural Networks" @default.
- W2907601597 cites W1821462560 @default.
- W2907601597 cites W2140538501 @default.
- W2907601597 cites W2158787690 @default.
- W2907601597 cites W2162723805 @default.
- W2907601597 cites W22717428 @default.
- W2907601597 cites W2401736393 @default.
- W2907601597 cites W2782636487 @default.
- W2907601597 cites W2797148637 @default.
- W2907601597 cites W2963687836 @default.
- W2907601597 cites W2964015378 @default.
- W2907601597 cites W2964311892 @default.
- W2907601597 doi "https://doi.org/10.1109/milcom.2018.8599840" @default.
- W2907601597 hasPublicationYear "2018" @default.
- W2907601597 type Work @default.
- W2907601597 sameAs 2907601597 @default.
- W2907601597 citedByCount "0" @default.
- W2907601597 crossrefType "proceedings-article" @default.
- W2907601597 hasAuthorship W2907601597A5011649304 @default.
- W2907601597 hasAuthorship W2907601597A5028273608 @default.
- W2907601597 hasAuthorship W2907601597A5036221931 @default.
- W2907601597 hasConcept C113839178 @default.
- W2907601597 hasConcept C119857082 @default.
- W2907601597 hasConcept C124101348 @default.
- W2907601597 hasConcept C132525143 @default.
- W2907601597 hasConcept C154945302 @default.
- W2907601597 hasConcept C2776214188 @default.
- W2907601597 hasConcept C30549945 @default.
- W2907601597 hasConcept C41008148 @default.
- W2907601597 hasConcept C47458327 @default.
- W2907601597 hasConcept C49937458 @default.
- W2907601597 hasConcept C80444323 @default.
- W2907601597 hasConcept C81363708 @default.
- W2907601597 hasConceptScore W2907601597C113839178 @default.
- W2907601597 hasConceptScore W2907601597C119857082 @default.
- W2907601597 hasConceptScore W2907601597C124101348 @default.
- W2907601597 hasConceptScore W2907601597C132525143 @default.
- W2907601597 hasConceptScore W2907601597C154945302 @default.
- W2907601597 hasConceptScore W2907601597C2776214188 @default.
- W2907601597 hasConceptScore W2907601597C30549945 @default.
- W2907601597 hasConceptScore W2907601597C41008148 @default.
- W2907601597 hasConceptScore W2907601597C47458327 @default.
- W2907601597 hasConceptScore W2907601597C49937458 @default.
- W2907601597 hasConceptScore W2907601597C80444323 @default.
- W2907601597 hasConceptScore W2907601597C81363708 @default.
- W2907601597 hasLocation W29076015971 @default.
- W2907601597 hasOpenAccess W2907601597 @default.
- W2907601597 hasPrimaryLocation W29076015971 @default.
- W2907601597 hasRelatedWork W1445015017 @default.
- W2907601597 hasRelatedWork W2415731916 @default.
- W2907601597 hasRelatedWork W2765889516 @default.
- W2907601597 hasRelatedWork W2767097019 @default.
- W2907601597 hasRelatedWork W2796623088 @default.
- W2907601597 hasRelatedWork W2920938200 @default.
- W2907601597 hasRelatedWork W3196211586 @default.
- W2907601597 hasRelatedWork W4206841102 @default.
- W2907601597 hasRelatedWork W4226146800 @default.
- W2907601597 hasRelatedWork W4287776258 @default.
- W2907601597 isParatext "false" @default.
- W2907601597 isRetracted "false" @default.
- W2907601597 magId "2907601597" @default.
- W2907601597 workType "article" @default.