Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907701003> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2907701003 endingPage "455" @default.
- W2907701003 startingPage "444" @default.
- W2907701003 abstract "The V100 GPU is the newest server-grade GPU produced by NVIDIA and introduces a number of new hardware and API features. This paper details the results of benchmarking the V100 GPU and demonstrates that it is a significant generational improvement, increasing memory bandwidth, cache bandwidth, and reducing latency. A major new addition is the Tensor core units, which have been marketed as deep learning acceleration features that enable the computation of a (4times 4times 4) half precision matrix-multiply-accumulate operation in a single clock cycle. This paper confirms that the Tensor cores offer considerable performance gains for half precision general matrix multiplication; however, programming them requires fine control of the memory hierarchy that is typically unnecessary for other applications." @default.
- W2907701003 created "2019-01-11" @default.
- W2907701003 creator A5020200003 @default.
- W2907701003 creator A5028117617 @default.
- W2907701003 creator A5083304505 @default.
- W2907701003 date "2018-12-31" @default.
- W2907701003 modified "2023-10-16" @default.
- W2907701003 title "Benchmarking the NVIDIA V100 GPU and Tensor Cores" @default.
- W2907701003 cites W2756833711 @default.
- W2907701003 cites W2757139593 @default.
- W2907701003 cites W3101543398 @default.
- W2907701003 doi "https://doi.org/10.1007/978-3-030-10549-5_35" @default.
- W2907701003 hasPublicationYear "2018" @default.
- W2907701003 type Work @default.
- W2907701003 sameAs 2907701003 @default.
- W2907701003 citedByCount "10" @default.
- W2907701003 countsByYear W29077010032019 @default.
- W2907701003 countsByYear W29077010032020 @default.
- W2907701003 countsByYear W29077010032021 @default.
- W2907701003 countsByYear W29077010032022 @default.
- W2907701003 countsByYear W29077010032023 @default.
- W2907701003 crossrefType "book-chapter" @default.
- W2907701003 hasAuthorship W2907701003A5020200003 @default.
- W2907701003 hasAuthorship W2907701003A5028117617 @default.
- W2907701003 hasAuthorship W2907701003A5083304505 @default.
- W2907701003 hasConcept C144133560 @default.
- W2907701003 hasConcept C162853370 @default.
- W2907701003 hasConcept C173608175 @default.
- W2907701003 hasConcept C41008148 @default.
- W2907701003 hasConcept C459310 @default.
- W2907701003 hasConcept C86251818 @default.
- W2907701003 hasConceptScore W2907701003C144133560 @default.
- W2907701003 hasConceptScore W2907701003C162853370 @default.
- W2907701003 hasConceptScore W2907701003C173608175 @default.
- W2907701003 hasConceptScore W2907701003C41008148 @default.
- W2907701003 hasConceptScore W2907701003C459310 @default.
- W2907701003 hasConceptScore W2907701003C86251818 @default.
- W2907701003 hasLocation W29077010031 @default.
- W2907701003 hasOpenAccess W2907701003 @default.
- W2907701003 hasPrimaryLocation W29077010031 @default.
- W2907701003 hasRelatedWork W1537716277 @default.
- W2907701003 hasRelatedWork W1848359393 @default.
- W2907701003 hasRelatedWork W1992299697 @default.
- W2907701003 hasRelatedWork W2127025027 @default.
- W2907701003 hasRelatedWork W2155350564 @default.
- W2907701003 hasRelatedWork W2385361820 @default.
- W2907701003 hasRelatedWork W2965967938 @default.
- W2907701003 hasRelatedWork W2999063186 @default.
- W2907701003 hasRelatedWork W3009603553 @default.
- W2907701003 hasRelatedWork W4206693874 @default.
- W2907701003 isParatext "false" @default.
- W2907701003 isRetracted "false" @default.
- W2907701003 magId "2907701003" @default.
- W2907701003 workType "book-chapter" @default.