Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907703872> ?p ?o ?g. }
- W2907703872 endingPage "137" @default.
- W2907703872 startingPage "123" @default.
- W2907703872 abstract "The densities of 15 liquids in the Li2CO3-Na2CO3-K2CO3-Rb2CO3-Cs2CO3-CaCO3-SrCO3-BaCO3 system were measured at 1 bar with the Pt double-bob Archimedean method between 758 and 1455 K. Melt compositions contain ≤50 mol% CaCO3, SrCO3 and BaCO3, and ≤100% Rb2CO3 and Cs2CO3. These results were combined with double-bob density measurements from the literature on nine liquids in the Li2CO3-Na2CO3-K2CO3-CaCO3 system to calibrate a new linear volume equation for multicomponent carbonate liquids. The regression led to the following fitted partial molar volumes (±1σ cm3/mol) at 1100 K for Li2CO3 (41.22 ± 0.09), Na2CO3 (53.27 ± 0.11), K2CO3 (71.59 ± 0.13), Rb2CO3 (80.78 ± 0.11), Cs2CO3 (94.00 ± 0.09), CaCO3 (40.18 ± 0.16), SrCO3 (44.33 ± 0.22) and BaCO3 (50.99 ± 0.19). At 1100 K, the thermal expansion coefficients of all alkali carbonate liquid components are indistinguishable within 1-sigma error (22.07 ± 1.66 × 10−5 K−1), but differ from the thermal expansion coefficients of all alkaline-earth carbonate liquid components, which are also indistinguishable within 1-sigma error (16.40 ± 2.85 × 10−5 K−1). The linear volume equation recovers the measurements within analytical error (±0.3%). The partial molar volumes of all eight carbonate components increase linearly along two different trends, one for the alkali carbonates (R2 = 0.999) and another for the alkaline earth carbonates (R2 = 0.999) as a function of cation volumes, where metal cation-oxygen coordination numbers are obtained from molecular dynamic simulations in the literature (ranging from 4- to 6-fold among the alkali metals and 7- to 8-fold among the alkaline-earth metals). The linear fits lead to two different partial molar volumes (∼38 and ∼31 cm3/mole) for the carbonate ion (CO32−) at 1100 K, which reflects a more open topological arrangement of the carbonate ions when in 4-fold coordination with the alkali metals vs. 6-fold coordination with alkaline earth metals. The results permit the partial molar volume of MgCO3 and FeCO3 in multicomponent carbonate liquids to be calculated if the oxygen and carbonate ion coordination with Mg2+ and Fe2+ are known. For example, in the case where Mg2+ and Fe2+ are in 6-fold coordination with both oxygen and carbonate, the estimated partial molar volumes at 1100 K are 34.4 (±0.6), and 35.1 (±0.6) cm3/mol, respectively, with a thermal expansion coefficient of 16.40 (±2.85) 10−5 K−1. In contrast, if Mg2+ and Fe2+ are in 4-fold coordination with both oxygen and carbonate, the estimated partial molar volumes at 1100 K are 40.0 (±0.6), and 40.4 (±0.6) cm3/mol, respectively, with a thermal expansion coefficient of 22.07 (±1.66) 10−5 K−1. To resolve these different estimates of molar volume, molecular dynamic simulations are needed to determine the respective coordination environments for Mg2+ and Fe2+ in carbonate liquids." @default.
- W2907703872 created "2019-01-11" @default.
- W2907703872 creator A5034067218 @default.
- W2907703872 creator A5073014308 @default.
- W2907703872 date "2019-03-01" @default.
- W2907703872 modified "2023-09-25" @default.
- W2907703872 title "The density of Li2CO3-Na2CO3-K2CO3-Rb2CO3-Cs2CO3-CaCO3-SrCO3-BaCO3 liquids: New measurements, ideal mixing, and systematic trends with composition" @default.
- W2907703872 cites W1499504002 @default.
- W2907703872 cites W1933331491 @default.
- W2907703872 cites W1967263714 @default.
- W2907703872 cites W1967652987 @default.
- W2907703872 cites W1979098172 @default.
- W2907703872 cites W1981520460 @default.
- W2907703872 cites W1993718686 @default.
- W2907703872 cites W1997939852 @default.
- W2907703872 cites W2003896874 @default.
- W2907703872 cites W2005287704 @default.
- W2907703872 cites W2010870210 @default.
- W2907703872 cites W2014416110 @default.
- W2907703872 cites W2015005440 @default.
- W2907703872 cites W2015179580 @default.
- W2907703872 cites W2023557796 @default.
- W2907703872 cites W2026862001 @default.
- W2907703872 cites W2027501907 @default.
- W2907703872 cites W2027811045 @default.
- W2907703872 cites W2030094152 @default.
- W2907703872 cites W2033186901 @default.
- W2907703872 cites W2043942862 @default.
- W2907703872 cites W2045743496 @default.
- W2907703872 cites W2046816003 @default.
- W2907703872 cites W2054111063 @default.
- W2907703872 cites W2057502998 @default.
- W2907703872 cites W2057602271 @default.
- W2907703872 cites W2064245664 @default.
- W2907703872 cites W2065594240 @default.
- W2907703872 cites W2067835615 @default.
- W2907703872 cites W2080803297 @default.
- W2907703872 cites W2081729916 @default.
- W2907703872 cites W2086694669 @default.
- W2907703872 cites W2087320324 @default.
- W2907703872 cites W2099914884 @default.
- W2907703872 cites W2107197640 @default.
- W2907703872 cites W2113840820 @default.
- W2907703872 cites W2134622402 @default.
- W2907703872 cites W2136551307 @default.
- W2907703872 cites W2139631470 @default.
- W2907703872 cites W2157069259 @default.
- W2907703872 cites W2157346467 @default.
- W2907703872 cites W2159637103 @default.
- W2907703872 cites W2161736871 @default.
- W2907703872 cites W2167590372 @default.
- W2907703872 cites W2175815851 @default.
- W2907703872 cites W2319675740 @default.
- W2907703872 cites W2329094493 @default.
- W2907703872 cites W2513798683 @default.
- W2907703872 cites W2519024239 @default.
- W2907703872 cites W2588543657 @default.
- W2907703872 cites W2736344392 @default.
- W2907703872 cites W4232260181 @default.
- W2907703872 doi "https://doi.org/10.1016/j.gca.2018.12.031" @default.
- W2907703872 hasPublicationYear "2019" @default.
- W2907703872 type Work @default.
- W2907703872 sameAs 2907703872 @default.
- W2907703872 citedByCount "10" @default.
- W2907703872 countsByYear W29077038722018 @default.
- W2907703872 countsByYear W29077038722019 @default.
- W2907703872 countsByYear W29077038722020 @default.
- W2907703872 countsByYear W29077038722022 @default.
- W2907703872 countsByYear W29077038722023 @default.
- W2907703872 crossrefType "journal-article" @default.
- W2907703872 hasAuthorship W2907703872A5034067218 @default.
- W2907703872 hasAuthorship W2907703872A5073014308 @default.
- W2907703872 hasBestOaLocation W29077038721 @default.
- W2907703872 hasConcept C113196181 @default.
- W2907703872 hasConcept C121332964 @default.
- W2907703872 hasConcept C138885662 @default.
- W2907703872 hasConcept C178790620 @default.
- W2907703872 hasConcept C179104552 @default.
- W2907703872 hasConcept C185592680 @default.
- W2907703872 hasConcept C198091228 @default.
- W2907703872 hasConcept C20556612 @default.
- W2907703872 hasConcept C206139338 @default.
- W2907703872 hasConcept C2776944184 @default.
- W2907703872 hasConcept C2779216218 @default.
- W2907703872 hasConcept C2780659211 @default.
- W2907703872 hasConcept C2910723988 @default.
- W2907703872 hasConcept C35249275 @default.
- W2907703872 hasConcept C40231798 @default.
- W2907703872 hasConcept C41895202 @default.
- W2907703872 hasConcept C47463417 @default.
- W2907703872 hasConcept C518915863 @default.
- W2907703872 hasConcept C62715864 @default.
- W2907703872 hasConcept C88371329 @default.
- W2907703872 hasConcept C97355855 @default.
- W2907703872 hasConceptScore W2907703872C113196181 @default.
- W2907703872 hasConceptScore W2907703872C121332964 @default.
- W2907703872 hasConceptScore W2907703872C138885662 @default.
- W2907703872 hasConceptScore W2907703872C178790620 @default.