Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907764440> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2907764440 endingPage "132" @default.
- W2907764440 startingPage "123" @default.
- W2907764440 abstract "Facial images convey important demographic information such as ethnicity and gender. In this paper, machine learning approach is taken to solve the ethnicity classification problem. Artificial neural networks trained by state of the art optimization algorithms are used to classify faces as Caucasian or non-Caucasian based on the color of the skin. A feedforward neural network is trained using Galactic Swarm Optimization (GSO) algorithm which gives superior performance to other training algorithms such as backpropagation and Particle Swarm Optimization (PSO) which have been used earlier. In this paper, the RGB values of the skin are taken as inputs to the neural network. Each pixel of the image will be classified according to their RGB values and the class having the maximum number of pixels will be the output. Simulation results indicate that the neural network trained with GSO gives a more accurate classification and converges faster than the other state of the art optimization algorithms." @default.
- W2907764440 created "2019-01-11" @default.
- W2907764440 creator A5053271547 @default.
- W2907764440 creator A5062130068 @default.
- W2907764440 creator A5072564674 @default.
- W2907764440 date "2018-12-31" @default.
- W2907764440 modified "2023-09-23" @default.
- W2907764440 title "Accurate Facial Ethnicity Classification Using Artificial Neural Networks Trained with Galactic Swarm Optimization Algorithm" @default.
- W2907764440 cites W1839137930 @default.
- W2907764440 cites W1978815197 @default.
- W2907764440 cites W1993766142 @default.
- W2907764440 cites W1993877362 @default.
- W2907764440 cites W2008222302 @default.
- W2907764440 cites W2095580272 @default.
- W2907764440 cites W2096246895 @default.
- W2907764440 cites W2137802466 @default.
- W2907764440 cites W2144219375 @default.
- W2907764440 cites W2144354855 @default.
- W2907764440 cites W2523222077 @default.
- W2907764440 cites W2543580944 @default.
- W2907764440 doi "https://doi.org/10.1007/978-981-13-3329-3_12" @default.
- W2907764440 hasPublicationYear "2018" @default.
- W2907764440 type Work @default.
- W2907764440 sameAs 2907764440 @default.
- W2907764440 citedByCount "5" @default.
- W2907764440 countsByYear W29077644402020 @default.
- W2907764440 countsByYear W29077644402021 @default.
- W2907764440 countsByYear W29077644402022 @default.
- W2907764440 countsByYear W29077644402023 @default.
- W2907764440 crossrefType "book-chapter" @default.
- W2907764440 hasAuthorship W2907764440A5053271547 @default.
- W2907764440 hasAuthorship W2907764440A5062130068 @default.
- W2907764440 hasAuthorship W2907764440A5072564674 @default.
- W2907764440 hasConcept C11413529 @default.
- W2907764440 hasConcept C119857082 @default.
- W2907764440 hasConcept C153180895 @default.
- W2907764440 hasConcept C154945302 @default.
- W2907764440 hasConcept C155032097 @default.
- W2907764440 hasConcept C160633673 @default.
- W2907764440 hasConcept C41008148 @default.
- W2907764440 hasConcept C47702885 @default.
- W2907764440 hasConcept C50644808 @default.
- W2907764440 hasConcept C85617194 @default.
- W2907764440 hasConceptScore W2907764440C11413529 @default.
- W2907764440 hasConceptScore W2907764440C119857082 @default.
- W2907764440 hasConceptScore W2907764440C153180895 @default.
- W2907764440 hasConceptScore W2907764440C154945302 @default.
- W2907764440 hasConceptScore W2907764440C155032097 @default.
- W2907764440 hasConceptScore W2907764440C160633673 @default.
- W2907764440 hasConceptScore W2907764440C41008148 @default.
- W2907764440 hasConceptScore W2907764440C47702885 @default.
- W2907764440 hasConceptScore W2907764440C50644808 @default.
- W2907764440 hasConceptScore W2907764440C85617194 @default.
- W2907764440 hasLocation W29077644401 @default.
- W2907764440 hasOpenAccess W2907764440 @default.
- W2907764440 hasPrimaryLocation W29077644401 @default.
- W2907764440 hasRelatedWork W1489050811 @default.
- W2907764440 hasRelatedWork W1965678419 @default.
- W2907764440 hasRelatedWork W2032093750 @default.
- W2907764440 hasRelatedWork W2080531293 @default.
- W2907764440 hasRelatedWork W2137699621 @default.
- W2907764440 hasRelatedWork W2294284812 @default.
- W2907764440 hasRelatedWork W2350832155 @default.
- W2907764440 hasRelatedWork W2391384657 @default.
- W2907764440 hasRelatedWork W2978475941 @default.
- W2907764440 hasRelatedWork W3123533727 @default.
- W2907764440 isParatext "false" @default.
- W2907764440 isRetracted "false" @default.
- W2907764440 magId "2907764440" @default.
- W2907764440 workType "book-chapter" @default.