Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907804426> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2907804426 abstract "Cyber-Physical Systems (CPSs)have become ubiquitous in recent years and has become the core of modern critical infrastructure and industrial applications. Therefore, ensuring security is a prime concern. Due to the success of Deep Learning (DL)in a multitude of domains, development of DL based CPS security applications have received increased interest in the past few years. Developing generalized models is critical since the models have to perform well under threats that they havent trained on. However, despite the broad body of work on using DL for ensuring the security of CPSs, to our best knowledge very little work exists where the focus is on the generalization capabilities of these DL applications. In this paper, we intend to provide a concise survey of the regularization methods for DL algorithms used in security-related applications in CPSs and thus could be used to improve the generalization capability of DL based cyber-physical system based security applications. Further, we provide a brief insight into the current challenges and future directions as well." @default.
- W2907804426 created "2019-01-11" @default.
- W2907804426 creator A5031428916 @default.
- W2907804426 creator A5032679061 @default.
- W2907804426 creator A5057592818 @default.
- W2907804426 creator A5062404663 @default.
- W2907804426 date "2018-10-01" @default.
- W2907804426 modified "2023-10-15" @default.
- W2907804426 title "Generalization of Deep Learning for Cyber-Physical System Security: A Survey" @default.
- W2907804426 cites W1955055330 @default.
- W2907804426 cites W1964472905 @default.
- W2907804426 cites W1968327128 @default.
- W2907804426 cites W1973895663 @default.
- W2907804426 cites W2060346113 @default.
- W2907804426 cites W2064675550 @default.
- W2907804426 cites W2076063813 @default.
- W2907804426 cites W2097117768 @default.
- W2907804426 cites W2118023920 @default.
- W2907804426 cites W2156297475 @default.
- W2907804426 cites W2180612164 @default.
- W2907804426 cites W2414564754 @default.
- W2907804426 cites W2508613954 @default.
- W2907804426 cites W2554148185 @default.
- W2907804426 cites W2565516711 @default.
- W2907804426 cites W2608911009 @default.
- W2907804426 cites W2887244718 @default.
- W2907804426 cites W2887597525 @default.
- W2907804426 cites W2919115771 @default.
- W2907804426 cites W4242954457 @default.
- W2907804426 cites W4245460974 @default.
- W2907804426 doi "https://doi.org/10.1109/iecon.2018.8591773" @default.
- W2907804426 hasPublicationYear "2018" @default.
- W2907804426 type Work @default.
- W2907804426 sameAs 2907804426 @default.
- W2907804426 citedByCount "59" @default.
- W2907804426 countsByYear W29078044262018 @default.
- W2907804426 countsByYear W29078044262019 @default.
- W2907804426 countsByYear W29078044262020 @default.
- W2907804426 countsByYear W29078044262021 @default.
- W2907804426 countsByYear W29078044262022 @default.
- W2907804426 countsByYear W29078044262023 @default.
- W2907804426 crossrefType "proceedings-article" @default.
- W2907804426 hasAuthorship W2907804426A5031428916 @default.
- W2907804426 hasAuthorship W2907804426A5032679061 @default.
- W2907804426 hasAuthorship W2907804426A5057592818 @default.
- W2907804426 hasAuthorship W2907804426A5062404663 @default.
- W2907804426 hasConcept C108583219 @default.
- W2907804426 hasConcept C111472728 @default.
- W2907804426 hasConcept C111919701 @default.
- W2907804426 hasConcept C134306372 @default.
- W2907804426 hasConcept C138885662 @default.
- W2907804426 hasConcept C154945302 @default.
- W2907804426 hasConcept C177148314 @default.
- W2907804426 hasConcept C179768478 @default.
- W2907804426 hasConcept C2522767166 @default.
- W2907804426 hasConcept C2776135515 @default.
- W2907804426 hasConcept C2776157020 @default.
- W2907804426 hasConcept C2780565519 @default.
- W2907804426 hasConcept C33923547 @default.
- W2907804426 hasConcept C38652104 @default.
- W2907804426 hasConcept C41008148 @default.
- W2907804426 hasConceptScore W2907804426C108583219 @default.
- W2907804426 hasConceptScore W2907804426C111472728 @default.
- W2907804426 hasConceptScore W2907804426C111919701 @default.
- W2907804426 hasConceptScore W2907804426C134306372 @default.
- W2907804426 hasConceptScore W2907804426C138885662 @default.
- W2907804426 hasConceptScore W2907804426C154945302 @default.
- W2907804426 hasConceptScore W2907804426C177148314 @default.
- W2907804426 hasConceptScore W2907804426C179768478 @default.
- W2907804426 hasConceptScore W2907804426C2522767166 @default.
- W2907804426 hasConceptScore W2907804426C2776135515 @default.
- W2907804426 hasConceptScore W2907804426C2776157020 @default.
- W2907804426 hasConceptScore W2907804426C2780565519 @default.
- W2907804426 hasConceptScore W2907804426C33923547 @default.
- W2907804426 hasConceptScore W2907804426C38652104 @default.
- W2907804426 hasConceptScore W2907804426C41008148 @default.
- W2907804426 hasLocation W29078044261 @default.
- W2907804426 hasOpenAccess W2907804426 @default.
- W2907804426 hasPrimaryLocation W29078044261 @default.
- W2907804426 hasRelatedWork W109401302 @default.
- W2907804426 hasRelatedWork W2089917086 @default.
- W2907804426 hasRelatedWork W2284373869 @default.
- W2907804426 hasRelatedWork W2425055597 @default.
- W2907804426 hasRelatedWork W2785394676 @default.
- W2907804426 hasRelatedWork W2803684864 @default.
- W2907804426 hasRelatedWork W2966196981 @default.
- W2907804426 hasRelatedWork W2971339411 @default.
- W2907804426 hasRelatedWork W4292554283 @default.
- W2907804426 hasRelatedWork W4318483655 @default.
- W2907804426 isParatext "false" @default.
- W2907804426 isRetracted "false" @default.
- W2907804426 magId "2907804426" @default.
- W2907804426 workType "article" @default.