Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907815512> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2907815512 endingPage "3225" @default.
- W2907815512 startingPage "3191" @default.
- W2907815512 abstract "In 1980, Roe proved that if a doubly-infinite sequence <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-brace f Subscript k Baseline right-brace> <mml:semantics> <mml:mrow> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo fence=false stretchy=false>}</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{f_k}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of functions on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f Subscript k plus 1 Baseline equals left-parenthesis d f Subscript k Baseline slash d x right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f_{k+1}=(df_{k}/dx)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartAbsoluteValue f Subscript k Baseline left-parenthesis x right-parenthesis EndAbsoluteValue less-than-or-equal-to upper M> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>|f_{k}(x)|leq M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k equals 0 comma plus-or-minus 1 comma plus-or-minus 2 comma midline-horizontal-ellipsis> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>k=0,pm 1,pm 2,cdots</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x element-of double-struck upper R> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>xin mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f 0 left-parenthesis x right-parenthesis equals a sine left-parenthesis x plus phi right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mi>sin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f_0(x)=asin (x+varphi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=a> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=application/x-tex>a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=phi> <mml:semantics> <mml:mi>φ<!-- φ --></mml:mi> <mml:annotation encoding=application/x-tex>varphi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are real constants. This result was extended to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript n> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by Strichartz in 1993, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d slash d x> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>d/dx</mml:annotation> </mml:semantics> </mml:math> </inline-formula> was substituted by the Laplacian on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript n> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. While it is plausible that this theorem extends to other Riemannian manifolds or Lie groups, Strichartz showed that the result holds true for Heisenberg groups, but fails for hyperbolic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=3> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=application/x-tex>3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space. This negative result can indeed be extended to any Riemannian symmetric space of noncompact type. We observe that this failure is rooted in the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dependence of the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spectrum of the Laplacian on the hyperbolic spaces. Taking this into account we shall prove that for all rank one Riemannian symmetric spaces of noncompact type, and more generally for the harmonic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N upper A> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>NA</mml:annotation> </mml:semantics> </mml:math> </inline-formula> groups, the theorem actually holds true when uniform boundedness is replaced by uniform “almost <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> boundedness”. In addition we shall see that for the symmetric spaces this theorem can be used to characterize the Poisson transforms of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions on the boundary, which somewhat resembles the original theorem of Roe on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2907815512 created "2019-01-11" @default.
- W2907815512 creator A5001172810 @default.
- W2907815512 creator A5036962581 @default.
- W2907815512 creator A5089166016 @default.
- W2907815512 date "2013-09-26" @default.
- W2907815512 modified "2023-10-13" @default.
- W2907815512 title "Characterization of almost 𝐿^{𝑝}-eigenfunctions of the Laplace-Beltrami operator" @default.
- W2907815512 cites W1767060541 @default.
- W2907815512 cites W1829145753 @default.
- W2907815512 cites W1976156872 @default.
- W2907815512 cites W1982036628 @default.
- W2907815512 cites W2008952794 @default.
- W2907815512 cites W2019178900 @default.
- W2907815512 cites W2023573427 @default.
- W2907815512 cites W204319721 @default.
- W2907815512 cites W2049234491 @default.
- W2907815512 cites W2053947267 @default.
- W2907815512 cites W2065516294 @default.
- W2907815512 cites W2066038589 @default.
- W2907815512 cites W2068598579 @default.
- W2907815512 cites W2072831818 @default.
- W2907815512 cites W2077652184 @default.
- W2907815512 cites W2079374306 @default.
- W2907815512 cites W2082747487 @default.
- W2907815512 cites W2090597237 @default.
- W2907815512 cites W2115628191 @default.
- W2907815512 cites W2118107707 @default.
- W2907815512 cites W2153269103 @default.
- W2907815512 cites W2171809136 @default.
- W2907815512 cites W2202983333 @default.
- W2907815512 cites W2315739251 @default.
- W2907815512 cites W2317381076 @default.
- W2907815512 cites W2326778275 @default.
- W2907815512 cites W2333782876 @default.
- W2907815512 cites W2535885901 @default.
- W2907815512 cites W2593539526 @default.
- W2907815512 cites W4232855594 @default.
- W2907815512 cites W4237836999 @default.
- W2907815512 cites W4240007303 @default.
- W2907815512 cites W4242129373 @default.
- W2907815512 cites W4252606047 @default.
- W2907815512 cites W962020798 @default.
- W2907815512 doi "https://doi.org/10.1090/s0002-9947-2013-06004-7" @default.
- W2907815512 hasPublicationYear "2013" @default.
- W2907815512 type Work @default.
- W2907815512 sameAs 2907815512 @default.
- W2907815512 citedByCount "11" @default.
- W2907815512 countsByYear W29078155122014 @default.
- W2907815512 countsByYear W29078155122015 @default.
- W2907815512 countsByYear W29078155122019 @default.
- W2907815512 countsByYear W29078155122020 @default.
- W2907815512 countsByYear W29078155122021 @default.
- W2907815512 countsByYear W29078155122022 @default.
- W2907815512 countsByYear W29078155122023 @default.
- W2907815512 crossrefType "journal-article" @default.
- W2907815512 hasAuthorship W2907815512A5001172810 @default.
- W2907815512 hasAuthorship W2907815512A5036962581 @default.
- W2907815512 hasAuthorship W2907815512A5089166016 @default.
- W2907815512 hasBestOaLocation W29078155121 @default.
- W2907815512 hasConcept C11413529 @default.
- W2907815512 hasConcept C154945302 @default.
- W2907815512 hasConcept C41008148 @default.
- W2907815512 hasConceptScore W2907815512C11413529 @default.
- W2907815512 hasConceptScore W2907815512C154945302 @default.
- W2907815512 hasConceptScore W2907815512C41008148 @default.
- W2907815512 hasIssue "6" @default.
- W2907815512 hasLocation W29078155121 @default.
- W2907815512 hasLocation W29078155122 @default.
- W2907815512 hasOpenAccess W2907815512 @default.
- W2907815512 hasPrimaryLocation W29078155121 @default.
- W2907815512 hasRelatedWork W2051487156 @default.
- W2907815512 hasRelatedWork W2073681303 @default.
- W2907815512 hasRelatedWork W2317200988 @default.
- W2907815512 hasRelatedWork W2358668433 @default.
- W2907815512 hasRelatedWork W2376932109 @default.
- W2907815512 hasRelatedWork W2382290278 @default.
- W2907815512 hasRelatedWork W2386767533 @default.
- W2907815512 hasRelatedWork W2390279801 @default.
- W2907815512 hasRelatedWork W2748952813 @default.
- W2907815512 hasRelatedWork W2899084033 @default.
- W2907815512 hasVolume "366" @default.
- W2907815512 isParatext "false" @default.
- W2907815512 isRetracted "false" @default.
- W2907815512 magId "2907815512" @default.
- W2907815512 workType "article" @default.