Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907865061> ?p ?o ?g. }
- W2907865061 endingPage "33" @default.
- W2907865061 startingPage "6" @default.
- W2907865061 abstract "We present a comprehensive case study to identify the best vessel-specific inventory family that predicts the primary emissions from an ocean-going vessel when at berth, while maneuvering and while cruising. The main purpose of the paper is to generalize the implication of the case study by advising a novel policy, which will allow different authorities to estimate the shipping emissions in a cost-effective and reliable way. The emissions rates of nitrogen oxides, sulphur oxides, carbon dioxide, carbon monoxide, hydrocarbon, and particulate matter from the main engine and from the auxiliary engines are measured for different modes of ship operations in an on-board experiment campaign. The measured total emission amounts were predicted with 13 families of emission inventories and prediction deviations have been calculated. A procedure was advised for estimating the prediction inventory deviations of the combined hourly emission amounts from the main engine plus the auxiliary engines. Each inventory family has been formalized as a six-dimensional vector of prediction deviations for any mode of operation. The best vessel-specific inventory families were identified using the minimal mean absolute deviation criteria. A more rational procedure to rank inventories is considered, which treats the missing value problem and constructs a six-attribute value function. The use of preferential analysis and value functions further clarifies the recommended choice of inventory method. In this case study we demonstrated that the most suitable inventory families will provide reliable predictions with acceptable deviations from the measured emissions. At berth and for maneuvering, the best inventory family turned out to be MOPSEA (with 32.2% and 39.6% mean absolute deviations respectively). For cruising, the most precise inventory family is MEET (with 59.2% mean absolute deviation), whereas MOPSEA being the third best. However, some of the other inventories produce unacceptably high deviation, well above 100%. The practical implication is that while inventory methods can produce precise and cost-effective predictions, they should never be used without experimental verification. That is why, we provide an algorithm to use on-board experimental measurements to identify the best vessel-specific inventory family, which predicts the primary emission of a ship at a given mode of operation. The proposed algorithm and the implications of the case study are utilized to motivate a proposal for a novel future policy for a cost-effective and reliable emission estimation from shipping." @default.
- W2907865061 created "2019-01-11" @default.
- W2907865061 creator A5030339916 @default.
- W2907865061 creator A5039132169 @default.
- W2907865061 creator A5039905175 @default.
- W2907865061 date "2018-11-29" @default.
- W2907865061 modified "2023-09-29" @default.
- W2907865061 title "Empirical testing of inventories applying on-board measurements of exhaust emissions at port and at sea" @default.
- W2907865061 cites W1577424866 @default.
- W2907865061 cites W1965597903 @default.
- W2907865061 cites W1973148075 @default.
- W2907865061 cites W1977218400 @default.
- W2907865061 cites W1977760652 @default.
- W2907865061 cites W1985283069 @default.
- W2907865061 cites W1986808060 @default.
- W2907865061 cites W1988680063 @default.
- W2907865061 cites W1992970488 @default.
- W2907865061 cites W1994750576 @default.
- W2907865061 cites W1997330848 @default.
- W2907865061 cites W1998381030 @default.
- W2907865061 cites W2002809601 @default.
- W2907865061 cites W2007342910 @default.
- W2907865061 cites W2012462554 @default.
- W2907865061 cites W2014001974 @default.
- W2907865061 cites W2016820800 @default.
- W2907865061 cites W2020397966 @default.
- W2907865061 cites W2023195620 @default.
- W2907865061 cites W2029270750 @default.
- W2907865061 cites W2039572524 @default.
- W2907865061 cites W2046564788 @default.
- W2907865061 cites W2047425465 @default.
- W2907865061 cites W2065866939 @default.
- W2907865061 cites W2074637985 @default.
- W2907865061 cites W2077107774 @default.
- W2907865061 cites W2088006939 @default.
- W2907865061 cites W2089330817 @default.
- W2907865061 cites W2092838154 @default.
- W2907865061 cites W2115450031 @default.
- W2907865061 cites W2125112285 @default.
- W2907865061 cites W2128178729 @default.
- W2907865061 cites W2129323517 @default.
- W2907865061 cites W2136905648 @default.
- W2907865061 cites W2142857651 @default.
- W2907865061 cites W2160591039 @default.
- W2907865061 cites W2164788271 @default.
- W2907865061 cites W2186481073 @default.
- W2907865061 cites W2281707539 @default.
- W2907865061 cites W2497172328 @default.
- W2907865061 cites W2904255904 @default.
- W2907865061 cites W389035508 @default.
- W2907865061 doi "https://doi.org/10.14254/jsdtl.2018.3-2.1" @default.
- W2907865061 hasPublicationYear "2018" @default.
- W2907865061 type Work @default.
- W2907865061 sameAs 2907865061 @default.
- W2907865061 citedByCount "1" @default.
- W2907865061 countsByYear W29078650612022 @default.
- W2907865061 crossrefType "journal-article" @default.
- W2907865061 hasAuthorship W2907865061A5030339916 @default.
- W2907865061 hasAuthorship W2907865061A5039132169 @default.
- W2907865061 hasAuthorship W2907865061A5039905175 @default.
- W2907865061 hasBestOaLocation W29078650611 @default.
- W2907865061 hasConcept C105795698 @default.
- W2907865061 hasConcept C111919701 @default.
- W2907865061 hasConcept C119599485 @default.
- W2907865061 hasConcept C121332964 @default.
- W2907865061 hasConcept C126314574 @default.
- W2907865061 hasConcept C127413603 @default.
- W2907865061 hasConcept C14036430 @default.
- W2907865061 hasConcept C143385712 @default.
- W2907865061 hasConcept C146978453 @default.
- W2907865061 hasConcept C153294291 @default.
- W2907865061 hasConcept C178790620 @default.
- W2907865061 hasConcept C185592680 @default.
- W2907865061 hasConcept C21547014 @default.
- W2907865061 hasConcept C24245907 @default.
- W2907865061 hasConcept C2776291640 @default.
- W2907865061 hasConcept C2776720842 @default.
- W2907865061 hasConcept C3018963415 @default.
- W2907865061 hasConcept C32802771 @default.
- W2907865061 hasConcept C33923547 @default.
- W2907865061 hasConcept C39432304 @default.
- W2907865061 hasConcept C41008148 @default.
- W2907865061 hasConcept C42475967 @default.
- W2907865061 hasConcept C48677424 @default.
- W2907865061 hasConcept C78458016 @default.
- W2907865061 hasConcept C86803240 @default.
- W2907865061 hasConceptScore W2907865061C105795698 @default.
- W2907865061 hasConceptScore W2907865061C111919701 @default.
- W2907865061 hasConceptScore W2907865061C119599485 @default.
- W2907865061 hasConceptScore W2907865061C121332964 @default.
- W2907865061 hasConceptScore W2907865061C126314574 @default.
- W2907865061 hasConceptScore W2907865061C127413603 @default.
- W2907865061 hasConceptScore W2907865061C14036430 @default.
- W2907865061 hasConceptScore W2907865061C143385712 @default.
- W2907865061 hasConceptScore W2907865061C146978453 @default.
- W2907865061 hasConceptScore W2907865061C153294291 @default.
- W2907865061 hasConceptScore W2907865061C178790620 @default.
- W2907865061 hasConceptScore W2907865061C185592680 @default.