Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907874667> ?p ?o ?g. }
- W2907874667 endingPage "9127" @default.
- W2907874667 startingPage "9116" @default.
- W2907874667 abstract "Due to the restriction of traffic management measure in large cities, large heavy-haul trucks can only travel on the circuits and expressways around the city, which often causes congestion in these areas. It is necessary to study the travel speed prediction of trucks on the urban ring road and provide special information services for trucks. Based on the data generated by the trucks driving on the Sixth Ring Road in Beijing, an optimized GRU algorithm is proposed to predict the travel speed of trucks driving on urban express roads under non-recurrent congested conditions. First, a GPS map-matching algorithm that can simultaneously meet the accuracy and efficiency requirements of matching is proposed. Then, the trucks' data traveling on the Sixth Ring Road in Beijing are extracted from the original data. Aiming at getting rid of the abnormal data in GPS data, the screening and processing rules of the abnormal data are made, and then, the traffic speed sequence is extracted. Aiming at the problem that the commonly used weight optimization algorithm SGD cannot adaptively adjust the learning rate, Adam, Adadelta, and Rmsprop are used to optimize the weights in the GRU model in this paper. Considering the four scenarios, including workday, weekend, rainy, and accident, the accuracies of the proposed methods are verified." @default.
- W2907874667 created "2019-01-11" @default.
- W2907874667 creator A5028296559 @default.
- W2907874667 creator A5036791448 @default.
- W2907874667 creator A5049648279 @default.
- W2907874667 creator A5053885989 @default.
- W2907874667 creator A5067210224 @default.
- W2907874667 creator A5075642035 @default.
- W2907874667 creator A5089770373 @default.
- W2907874667 date "2019-01-01" @default.
- W2907874667 modified "2023-10-17" @default.
- W2907874667 title "Truck Traffic Speed Prediction Under Non-Recurrent Congestion: Based on Optimized Deep Learning Algorithms and GPS Data" @default.
- W2907874667 cites W1967870944 @default.
- W2907874667 cites W1989386132 @default.
- W2907874667 cites W2000854095 @default.
- W2907874667 cites W2020336804 @default.
- W2907874667 cites W2021119385 @default.
- W2907874667 cites W2035907068 @default.
- W2907874667 cites W2037393385 @default.
- W2907874667 cites W2043202267 @default.
- W2907874667 cites W2047981744 @default.
- W2907874667 cites W2049970759 @default.
- W2907874667 cites W2053180906 @default.
- W2907874667 cites W2074746789 @default.
- W2907874667 cites W2078240650 @default.
- W2907874667 cites W2078770986 @default.
- W2907874667 cites W2100274121 @default.
- W2907874667 cites W2143592117 @default.
- W2907874667 cites W2171378715 @default.
- W2907874667 cites W2174231470 @default.
- W2907874667 cites W2229560155 @default.
- W2907874667 cites W2753455079 @default.
- W2907874667 cites W2772724270 @default.
- W2907874667 cites W2776370812 @default.
- W2907874667 cites W2789371837 @default.
- W2907874667 cites W2791677100 @default.
- W2907874667 cites W2793989388 @default.
- W2907874667 cites W2799454725 @default.
- W2907874667 cites W2886989521 @default.
- W2907874667 cites W2891363375 @default.
- W2907874667 cites W2894692710 @default.
- W2907874667 cites W2899160797 @default.
- W2907874667 doi "https://doi.org/10.1109/access.2018.2890414" @default.
- W2907874667 hasPublicationYear "2019" @default.
- W2907874667 type Work @default.
- W2907874667 sameAs 2907874667 @default.
- W2907874667 citedByCount "40" @default.
- W2907874667 countsByYear W29078746672019 @default.
- W2907874667 countsByYear W29078746672020 @default.
- W2907874667 countsByYear W29078746672021 @default.
- W2907874667 countsByYear W29078746672022 @default.
- W2907874667 countsByYear W29078746672023 @default.
- W2907874667 crossrefType "journal-article" @default.
- W2907874667 hasAuthorship W2907874667A5028296559 @default.
- W2907874667 hasAuthorship W2907874667A5036791448 @default.
- W2907874667 hasAuthorship W2907874667A5049648279 @default.
- W2907874667 hasAuthorship W2907874667A5053885989 @default.
- W2907874667 hasAuthorship W2907874667A5067210224 @default.
- W2907874667 hasAuthorship W2907874667A5075642035 @default.
- W2907874667 hasAuthorship W2907874667A5089770373 @default.
- W2907874667 hasBestOaLocation W29078746671 @default.
- W2907874667 hasConcept C105795698 @default.
- W2907874667 hasConcept C11413529 @default.
- W2907874667 hasConcept C124101348 @default.
- W2907874667 hasConcept C127413603 @default.
- W2907874667 hasConcept C165064840 @default.
- W2907874667 hasConcept C166957645 @default.
- W2907874667 hasConcept C171146098 @default.
- W2907874667 hasConcept C191935318 @default.
- W2907874667 hasConcept C205649164 @default.
- W2907874667 hasConcept C22212356 @default.
- W2907874667 hasConcept C2778304055 @default.
- W2907874667 hasConcept C2778360411 @default.
- W2907874667 hasConcept C2778559875 @default.
- W2907874667 hasConcept C2779888511 @default.
- W2907874667 hasConcept C33923547 @default.
- W2907874667 hasConcept C41008148 @default.
- W2907874667 hasConcept C52121051 @default.
- W2907874667 hasConcept C60229501 @default.
- W2907874667 hasConcept C64093975 @default.
- W2907874667 hasConcept C76155785 @default.
- W2907874667 hasConcept C79403827 @default.
- W2907874667 hasConceptScore W2907874667C105795698 @default.
- W2907874667 hasConceptScore W2907874667C11413529 @default.
- W2907874667 hasConceptScore W2907874667C124101348 @default.
- W2907874667 hasConceptScore W2907874667C127413603 @default.
- W2907874667 hasConceptScore W2907874667C165064840 @default.
- W2907874667 hasConceptScore W2907874667C166957645 @default.
- W2907874667 hasConceptScore W2907874667C171146098 @default.
- W2907874667 hasConceptScore W2907874667C191935318 @default.
- W2907874667 hasConceptScore W2907874667C205649164 @default.
- W2907874667 hasConceptScore W2907874667C22212356 @default.
- W2907874667 hasConceptScore W2907874667C2778304055 @default.
- W2907874667 hasConceptScore W2907874667C2778360411 @default.
- W2907874667 hasConceptScore W2907874667C2778559875 @default.
- W2907874667 hasConceptScore W2907874667C2779888511 @default.
- W2907874667 hasConceptScore W2907874667C33923547 @default.
- W2907874667 hasConceptScore W2907874667C41008148 @default.