Matches in SemOpenAlex for { <https://semopenalex.org/work/W2907966530> ?p ?o ?g. }
- W2907966530 endingPage "965" @default.
- W2907966530 startingPage "955" @default.
- W2907966530 abstract "Background Diffusion tensor imaging (DTI) parameters, such as fractional anisotropy (FA), allow examining the structural integrity of the brain. However, the true value of these parameters may be confounded by variability in MR hardware, acquisition parameters, and image quality. Purpose To examine the effects of confounding factors on FA and to evaluate the feasibility of statistical methods to model and reduce multicenter variability. Study Type Longitudinal multicenter study. Phantom DTI single strand phantom (HQ imaging). Field Strength/Sequence 3T diffusion tensor imaging. Assessments Thirteen European imaging centers participated. DTI scans were acquired every 6 months and whenever maintenance or upgrades to the system were performed. A total of 64 scans were acquired in 2 years, obtained by three scanner vendors, using six individual head coils, and 12 software versions. Statistical Tests The variability in FA was assessed by the coefficients of variation (CoV). Several linear mixed effects models (LMEM) were developed and compared by means of the Akaike Information Criterion (AIC). Results The CoV was 2.22% for mean FA and 18.40% for standard deviation of FA. The variables “site” ( P = 9.26 × 10 −5 ), “vendor” ( P = 2.18 × 10 −5 ), “head coil” ( P = 9.00 × 10 −4 ), “scanner drift,” “bandwidth” ( P = 0.033), “TE” ( P = 8.20 × 10 −6 ), “SNR” ( P = 0.029) and “mean residuals” ( P = 6.50 × 10 −4 ) had a significant effect on the variability in mean FA. The variables “site” ( P = 4.00 × 10 −4 ), “head coil” ( P = 2.00 × 10 −4 ), “software” ( P = 0.014), and “mean voxel outlier intensity count” ( P = 1.10 × 10 −4 ) had a significant effect on the variability in standard deviation of FA. The mean FA was best predicted by an LMEM that included “vendor” and the interaction term of “SNR” and “head coil” as model factors (AIC –347.98). In contrast, the standard deviation of FA was best predicted by an LMEM that included “vendor,” “bandwidth,” “TE,” and the interaction term between “SNR” and “head coil” (AIC –399.81). Data Conclusion Our findings suggest that perhaps statistical models seem promising to model the variability in quantitative DTI biomarkers for clinical routine and multicenter studies. Level of Evidence : 4 Technical Efficacy : Stage 2 J. Magn. Reson. Imaging 2019;49:955–965." @default.
- W2907966530 created "2019-01-11" @default.
- W2907966530 creator A5042872450 @default.
- W2907966530 creator A5042879245 @default.
- W2907966530 creator A5047626043 @default.
- W2907966530 creator A5057793733 @default.
- W2907966530 creator A5065231599 @default.
- W2907966530 creator A5066945263 @default.
- W2907966530 creator A5088926659 @default.
- W2907966530 date "2019-01-03" @default.
- W2907966530 modified "2023-09-27" @default.
- W2907966530 title "Potential of a statistical approach for the standardization of multicenter diffusion tensor data: A phantom study" @default.
- W2907966530 cites W1533618228 @default.
- W2907966530 cites W1945319319 @default.
- W2907966530 cites W1965160367 @default.
- W2907966530 cites W1979893109 @default.
- W2907966530 cites W2004006028 @default.
- W2907966530 cites W2004095567 @default.
- W2907966530 cites W2007889670 @default.
- W2907966530 cites W2009776298 @default.
- W2907966530 cites W2017244551 @default.
- W2907966530 cites W2019922683 @default.
- W2907966530 cites W2022530159 @default.
- W2907966530 cites W2044937157 @default.
- W2907966530 cites W2056716515 @default.
- W2907966530 cites W2057485113 @default.
- W2907966530 cites W2061058954 @default.
- W2907966530 cites W2062791478 @default.
- W2907966530 cites W2066931954 @default.
- W2907966530 cites W2070951696 @default.
- W2907966530 cites W2073842009 @default.
- W2907966530 cites W2095020921 @default.
- W2907966530 cites W2105034316 @default.
- W2907966530 cites W2108691360 @default.
- W2907966530 cites W2110443304 @default.
- W2907966530 cites W2110776215 @default.
- W2907966530 cites W2141161838 @default.
- W2907966530 cites W2151712416 @default.
- W2907966530 cites W2156763351 @default.
- W2907966530 cites W2344337444 @default.
- W2907966530 cites W2417059674 @default.
- W2907966530 cites W2465540875 @default.
- W2907966530 cites W2766094414 @default.
- W2907966530 cites W2793560073 @default.
- W2907966530 cites W2802618466 @default.
- W2907966530 cites W2950086191 @default.
- W2907966530 cites W4302438318 @default.
- W2907966530 doi "https://doi.org/10.1002/jmri.26333" @default.
- W2907966530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30605253" @default.
- W2907966530 hasPublicationYear "2019" @default.
- W2907966530 type Work @default.
- W2907966530 sameAs 2907966530 @default.
- W2907966530 citedByCount "7" @default.
- W2907966530 countsByYear W29079665302019 @default.
- W2907966530 countsByYear W29079665302020 @default.
- W2907966530 countsByYear W29079665302021 @default.
- W2907966530 countsByYear W29079665302022 @default.
- W2907966530 countsByYear W29079665302023 @default.
- W2907966530 crossrefType "journal-article" @default.
- W2907966530 hasAuthorship W2907966530A5042872450 @default.
- W2907966530 hasAuthorship W2907966530A5042879245 @default.
- W2907966530 hasAuthorship W2907966530A5047626043 @default.
- W2907966530 hasAuthorship W2907966530A5057793733 @default.
- W2907966530 hasAuthorship W2907966530A5065231599 @default.
- W2907966530 hasAuthorship W2907966530A5066945263 @default.
- W2907966530 hasAuthorship W2907966530A5088926659 @default.
- W2907966530 hasConcept C104293457 @default.
- W2907966530 hasConcept C105795698 @default.
- W2907966530 hasConcept C115961682 @default.
- W2907966530 hasConcept C126674687 @default.
- W2907966530 hasConcept C126838900 @default.
- W2907966530 hasConcept C143409427 @default.
- W2907966530 hasConcept C149550507 @default.
- W2907966530 hasConcept C154945302 @default.
- W2907966530 hasConcept C166963901 @default.
- W2907966530 hasConcept C22679943 @default.
- W2907966530 hasConcept C2779751349 @default.
- W2907966530 hasConcept C2989005 @default.
- W2907966530 hasConcept C33923547 @default.
- W2907966530 hasConcept C41008148 @default.
- W2907966530 hasConcept C54170458 @default.
- W2907966530 hasConcept C55020928 @default.
- W2907966530 hasConcept C70816921 @default.
- W2907966530 hasConcept C71924100 @default.
- W2907966530 hasConcept C89916169 @default.
- W2907966530 hasConcept C9893847 @default.
- W2907966530 hasConceptScore W2907966530C104293457 @default.
- W2907966530 hasConceptScore W2907966530C105795698 @default.
- W2907966530 hasConceptScore W2907966530C115961682 @default.
- W2907966530 hasConceptScore W2907966530C126674687 @default.
- W2907966530 hasConceptScore W2907966530C126838900 @default.
- W2907966530 hasConceptScore W2907966530C143409427 @default.
- W2907966530 hasConceptScore W2907966530C149550507 @default.
- W2907966530 hasConceptScore W2907966530C154945302 @default.
- W2907966530 hasConceptScore W2907966530C166963901 @default.
- W2907966530 hasConceptScore W2907966530C22679943 @default.
- W2907966530 hasConceptScore W2907966530C2779751349 @default.
- W2907966530 hasConceptScore W2907966530C2989005 @default.