Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908079181> ?p ?o ?g. }
- W2908079181 endingPage "78" @default.
- W2908079181 startingPage "68" @default.
- W2908079181 abstract "During the transition period, dairy cattle undergo tremendous metabolic and physiological changes to prepare for milk synthesis and secretion. Failure to sufficiently regulate these changes may lead to metabolic stress, which increases risk of transition diseases. Metabolic stress is defined as a physiological state consisting of 3 components: aberrant nutrient metabolism, oxidative stress, and inflammation. Current monitoring methods to detect cows experiencing metabolic stress involve measuring biomarkers for nutrient metabolism. However, these biomarkers, including non-esterified fatty acids, beta-hydroxybutyrate, and calcium are typically measured a few weeks before to a few days after calving. This is a retroactive approach, because there is little time to integrate interventions that remediate metabolic stress in the current cohort. Our objective was to determine if biomarkers of metabolic stress measured at dry-off are predictive of transition disease risk. We designed a prospective cohort study carried out on 5 Michigan dairy farms (N = 277 cows). We followed cows from dry-off to 30 days post-calving. Diseases and adverse outcomes were grouped in an aggregate outcome that included mastitis, metritis, retained placenta, ketosis, lameness, pneumonia, milk fever, displaced abomasum, abortion, and death of the calf or the cow. We used best subsets selection to select candidate models for four different sets of models: one set for each component of metabolic stress (nutrient metabolism, oxidative stress, and inflammation), and a combined model that included all 3 components. We used model averaging to obtain averaged predicted probabilities across each model set. We hypothesized that the averaged predictions from the combined model set with all 3 components of metabolic stress would be more effective at predicting disease than each individual component model set. The area under the curve estimated using receiver operator characteristic curves for the combined model set (0.93; 95% confidence interval [CI] = 0.90-0.96) was significantly higher compared with averaged predictions from the inflammation (0.87; 95% CI = 0.83-0.91), oxidative stress (0.78; 95% CI = 0.72-0.84), and nutrient metabolism (0.73; 95% CI = 0.67-0.79) model sets (p < 0.05). Our results indicate that it may be possible to detect cattle at risk for some transition diseases as early as dry-off. This has important implications for disease prevention, as earlier identification of cows at risk of health disorders will allow for earlier implementation of intervention strategies. A limitation of the current study is that we did not perform external validation. Future validation studies are needed to confirm our findings." @default.
- W2908079181 created "2019-01-11" @default.
- W2908079181 creator A5001725558 @default.
- W2908079181 creator A5018946257 @default.
- W2908079181 creator A5040076569 @default.
- W2908079181 creator A5066552256 @default.
- W2908079181 creator A5086358723 @default.
- W2908079181 creator A5087488842 @default.
- W2908079181 date "2019-02-01" @default.
- W2908079181 modified "2023-10-16" @default.
- W2908079181 title "Predictive models for early lactation diseases in transition dairy cattle at dry-off" @default.
- W2908079181 cites W154377515 @default.
- W2908079181 cites W1966530374 @default.
- W2908079181 cites W1969107845 @default.
- W2908079181 cites W1984004077 @default.
- W2908079181 cites W1986096968 @default.
- W2908079181 cites W1987464952 @default.
- W2908079181 cites W1987893244 @default.
- W2908079181 cites W1989537794 @default.
- W2908079181 cites W1991721135 @default.
- W2908079181 cites W1995773136 @default.
- W2908079181 cites W2000711037 @default.
- W2908079181 cites W2001114986 @default.
- W2908079181 cites W2008618406 @default.
- W2908079181 cites W2012103295 @default.
- W2908079181 cites W2012991711 @default.
- W2908079181 cites W2014844722 @default.
- W2908079181 cites W2016591779 @default.
- W2908079181 cites W2018523184 @default.
- W2908079181 cites W2024055184 @default.
- W2908079181 cites W2030749078 @default.
- W2908079181 cites W2033883349 @default.
- W2908079181 cites W2035970054 @default.
- W2908079181 cites W2036986493 @default.
- W2908079181 cites W2038026694 @default.
- W2908079181 cites W2039003271 @default.
- W2908079181 cites W2043746367 @default.
- W2908079181 cites W2054997263 @default.
- W2908079181 cites W2055352610 @default.
- W2908079181 cites W2055551138 @default.
- W2908079181 cites W2057630159 @default.
- W2908079181 cites W2059209487 @default.
- W2908079181 cites W2064576411 @default.
- W2908079181 cites W2065974896 @default.
- W2908079181 cites W2067989944 @default.
- W2908079181 cites W2072616370 @default.
- W2908079181 cites W2074932800 @default.
- W2908079181 cites W2075251005 @default.
- W2908079181 cites W2075724353 @default.
- W2908079181 cites W2080565381 @default.
- W2908079181 cites W2090815000 @default.
- W2908079181 cites W2094354621 @default.
- W2908079181 cites W2101086094 @default.
- W2908079181 cites W2119814550 @default.
- W2908079181 cites W2123374326 @default.
- W2908079181 cites W2130388938 @default.
- W2908079181 cites W2131532110 @default.
- W2908079181 cites W2131842864 @default.
- W2908079181 cites W2138015251 @default.
- W2908079181 cites W2144018395 @default.
- W2908079181 cites W2146696861 @default.
- W2908079181 cites W2155821018 @default.
- W2908079181 cites W2158196600 @default.
- W2908079181 cites W2165564620 @default.
- W2908079181 cites W2171642892 @default.
- W2908079181 cites W2210979499 @default.
- W2908079181 cites W2216289361 @default.
- W2908079181 cites W2342869612 @default.
- W2908079181 cites W2465086027 @default.
- W2908079181 cites W2545454396 @default.
- W2908079181 cites W2556033785 @default.
- W2908079181 cites W2768454712 @default.
- W2908079181 cites W3121452939 @default.
- W2908079181 doi "https://doi.org/10.1016/j.prevetmed.2018.12.014" @default.
- W2908079181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30670188" @default.
- W2908079181 hasPublicationYear "2019" @default.
- W2908079181 type Work @default.
- W2908079181 sameAs 2908079181 @default.
- W2908079181 citedByCount "30" @default.
- W2908079181 countsByYear W29080791812019 @default.
- W2908079181 countsByYear W29080791812020 @default.
- W2908079181 countsByYear W29080791812021 @default.
- W2908079181 countsByYear W29080791812022 @default.
- W2908079181 countsByYear W29080791812023 @default.
- W2908079181 crossrefType "journal-article" @default.
- W2908079181 hasAuthorship W2908079181A5001725558 @default.
- W2908079181 hasAuthorship W2908079181A5018946257 @default.
- W2908079181 hasAuthorship W2908079181A5040076569 @default.
- W2908079181 hasAuthorship W2908079181A5066552256 @default.
- W2908079181 hasAuthorship W2908079181A5086358723 @default.
- W2908079181 hasAuthorship W2908079181A5087488842 @default.
- W2908079181 hasBestOaLocation W29080791811 @default.
- W2908079181 hasConcept C134018914 @default.
- W2908079181 hasConcept C140793950 @default.
- W2908079181 hasConcept C142724271 @default.
- W2908079181 hasConcept C172680121 @default.
- W2908079181 hasConcept C22641795 @default.
- W2908079181 hasConcept C2776344049 @default.