Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908182356> ?p ?o ?g. }
- W2908182356 endingPage "159" @default.
- W2908182356 startingPage "159" @default.
- W2908182356 abstract "With the high wind penetration in the power system, accurate and reliable probabilistic wind power forecasting has become even more significant for the reliability of the power system. In this paper, an instance-based transfer learning method combined with gradient boosting decision trees (GBDT) is proposed to develop a wind power quantile regression model. Based on the spatial cross-correlation characteristic of wind power generations in different zones, the proposed model utilizes wind power generations in correlated zones as the source problems of instance-based transfer learning. By incorporating the training data of source problems into the training process, the proposed model successfully reduces the prediction error of wind power generation in the target zone. To prevent negative transfer, this paper proposes a method that properly assigns weights to data from different source problems in the training process, whereby the weights of related source problems are increased, while those of unrelated ones are reduced. Case studies are developed based on the dataset from the Global Energy Forecasting Competition 2014 (GEFCom2014). The results confirm that the proposed model successfully improves the prediction accuracy compared to GBDT-based benchmark models, especially when the target problem has a small training set while resourceful source problems are available." @default.
- W2908182356 created "2019-01-11" @default.
- W2908182356 creator A5032503755 @default.
- W2908182356 creator A5062801616 @default.
- W2908182356 creator A5071754046 @default.
- W2908182356 creator A5079235906 @default.
- W2908182356 date "2019-01-03" @default.
- W2908182356 modified "2023-09-30" @default.
- W2908182356 title "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees" @default.
- W2908182356 cites W1864372840 @default.
- W2908182356 cites W1908816480 @default.
- W2908182356 cites W1947016306 @default.
- W2908182356 cites W1964948217 @default.
- W2908182356 cites W1966818217 @default.
- W2908182356 cites W1991274233 @default.
- W2908182356 cites W2003065554 @default.
- W2908182356 cites W2017468850 @default.
- W2908182356 cites W2023870905 @default.
- W2908182356 cites W2077689216 @default.
- W2908182356 cites W2082811521 @default.
- W2908182356 cites W2086691266 @default.
- W2908182356 cites W2088794999 @default.
- W2908182356 cites W2093843598 @default.
- W2908182356 cites W2101457442 @default.
- W2908182356 cites W2112159553 @default.
- W2908182356 cites W2116224582 @default.
- W2908182356 cites W2118788550 @default.
- W2908182356 cites W2124640139 @default.
- W2908182356 cites W2132634326 @default.
- W2908182356 cites W2152556073 @default.
- W2908182356 cites W2159613153 @default.
- W2908182356 cites W2163707786 @default.
- W2908182356 cites W2165698076 @default.
- W2908182356 cites W2175195964 @default.
- W2908182356 cites W2279029373 @default.
- W2908182356 cites W2283717164 @default.
- W2908182356 cites W2284910918 @default.
- W2908182356 cites W2287810892 @default.
- W2908182356 cites W2296521892 @default.
- W2908182356 cites W2312482938 @default.
- W2908182356 cites W2344264352 @default.
- W2908182356 cites W2344428291 @default.
- W2908182356 cites W2374131623 @default.
- W2908182356 cites W2404698295 @default.
- W2908182356 cites W2607339923 @default.
- W2908182356 cites W2784210199 @default.
- W2908182356 cites W2808856084 @default.
- W2908182356 cites W2887547698 @default.
- W2908182356 cites W2963936896 @default.
- W2908182356 doi "https://doi.org/10.3390/en12010159" @default.
- W2908182356 hasPublicationYear "2019" @default.
- W2908182356 type Work @default.
- W2908182356 sameAs 2908182356 @default.
- W2908182356 citedByCount "43" @default.
- W2908182356 countsByYear W29081823562019 @default.
- W2908182356 countsByYear W29081823562020 @default.
- W2908182356 countsByYear W29081823562021 @default.
- W2908182356 countsByYear W29081823562022 @default.
- W2908182356 countsByYear W29081823562023 @default.
- W2908182356 crossrefType "journal-article" @default.
- W2908182356 hasAuthorship W2908182356A5032503755 @default.
- W2908182356 hasAuthorship W2908182356A5062801616 @default.
- W2908182356 hasAuthorship W2908182356A5071754046 @default.
- W2908182356 hasAuthorship W2908182356A5079235906 @default.
- W2908182356 hasBestOaLocation W29081823561 @default.
- W2908182356 hasConcept C119599485 @default.
- W2908182356 hasConcept C119857082 @default.
- W2908182356 hasConcept C121332964 @default.
- W2908182356 hasConcept C122282355 @default.
- W2908182356 hasConcept C124101348 @default.
- W2908182356 hasConcept C127413603 @default.
- W2908182356 hasConcept C150899416 @default.
- W2908182356 hasConcept C153294291 @default.
- W2908182356 hasConcept C154945302 @default.
- W2908182356 hasConcept C161067210 @default.
- W2908182356 hasConcept C163258240 @default.
- W2908182356 hasConcept C169258074 @default.
- W2908182356 hasConcept C2781084341 @default.
- W2908182356 hasConcept C41008148 @default.
- W2908182356 hasConcept C46686674 @default.
- W2908182356 hasConcept C49937458 @default.
- W2908182356 hasConcept C62520636 @default.
- W2908182356 hasConcept C70153297 @default.
- W2908182356 hasConcept C78600449 @default.
- W2908182356 hasConcept C84525736 @default.
- W2908182356 hasConcept C89227174 @default.
- W2908182356 hasConceptScore W2908182356C119599485 @default.
- W2908182356 hasConceptScore W2908182356C119857082 @default.
- W2908182356 hasConceptScore W2908182356C121332964 @default.
- W2908182356 hasConceptScore W2908182356C122282355 @default.
- W2908182356 hasConceptScore W2908182356C124101348 @default.
- W2908182356 hasConceptScore W2908182356C127413603 @default.
- W2908182356 hasConceptScore W2908182356C150899416 @default.
- W2908182356 hasConceptScore W2908182356C153294291 @default.
- W2908182356 hasConceptScore W2908182356C154945302 @default.
- W2908182356 hasConceptScore W2908182356C161067210 @default.
- W2908182356 hasConceptScore W2908182356C163258240 @default.
- W2908182356 hasConceptScore W2908182356C169258074 @default.