Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908202403> ?p ?o ?g. }
- W2908202403 endingPage "404" @default.
- W2908202403 startingPage "397" @default.
- W2908202403 abstract "Post-treatment is one of the facile and effective approaches to stabilize organic–inorganic hybrid perovskites. In this work, we apply a machine learning technique to study the trend of reactivity of different types of amines, which are used for the post-treatment of organic–inorganic hybrid perovskite films. Fifty amines are classified based on their compatibility with the methylammonium lead iodide films. Machine learning models are constructed from the classification of these amines and their molecular descriptor features. The model has achieved 86% accuracy on predicting the outcomes of whether perovskite films are maintained after post-treatment. By analyzing the constructed models, it was found that amines with fewer hydrogen bond donors and acceptors, more steric bulk, secondary, tertiary amines, and pyridine derivatives tend to have high compatibility with perovskite films." @default.
- W2908202403 created "2019-01-11" @default.
- W2908202403 creator A5027721961 @default.
- W2908202403 creator A5070387416 @default.
- W2908202403 creator A5084153516 @default.
- W2908202403 creator A5085419621 @default.
- W2908202403 date "2019-01-04" @default.
- W2908202403 modified "2023-10-16" @default.
- W2908202403 title "Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with Post-Treatment Amines" @default.
- W2908202403 cites W1991889838 @default.
- W2908202403 cites W1991981401 @default.
- W2908202403 cites W2001463128 @default.
- W2908202403 cites W2004915807 @default.
- W2908202403 cites W2006619554 @default.
- W2908202403 cites W2073726416 @default.
- W2908202403 cites W2075511306 @default.
- W2908202403 cites W2112845989 @default.
- W2908202403 cites W2129970907 @default.
- W2908202403 cites W2134473756 @default.
- W2908202403 cites W2135046866 @default.
- W2908202403 cites W2142498492 @default.
- W2908202403 cites W2144574847 @default.
- W2908202403 cites W2156019254 @default.
- W2908202403 cites W2218455763 @default.
- W2908202403 cites W2225539228 @default.
- W2908202403 cites W2257893958 @default.
- W2908202403 cites W2331573337 @default.
- W2908202403 cites W2347129741 @default.
- W2908202403 cites W2474894284 @default.
- W2908202403 cites W2527042635 @default.
- W2908202403 cites W2582187633 @default.
- W2908202403 cites W2590275027 @default.
- W2908202403 cites W2606191816 @default.
- W2908202403 cites W2606363443 @default.
- W2908202403 cites W2618408202 @default.
- W2908202403 cites W2622322262 @default.
- W2908202403 cites W2624849886 @default.
- W2908202403 cites W2699712783 @default.
- W2908202403 cites W2734691712 @default.
- W2908202403 cites W2742835787 @default.
- W2908202403 cites W2747592475 @default.
- W2908202403 cites W2749734633 @default.
- W2908202403 cites W2753605999 @default.
- W2908202403 cites W2754560477 @default.
- W2908202403 cites W2767693464 @default.
- W2908202403 cites W2767767460 @default.
- W2908202403 cites W2774977638 @default.
- W2908202403 cites W2786308452 @default.
- W2908202403 cites W2789335992 @default.
- W2908202403 cites W2794274099 @default.
- W2908202403 cites W2799620402 @default.
- W2908202403 cites W2800722845 @default.
- W2908202403 cites W2802872171 @default.
- W2908202403 cites W2803389731 @default.
- W2908202403 cites W2806889665 @default.
- W2908202403 cites W2807070436 @default.
- W2908202403 cites W2884430236 @default.
- W2908202403 cites W2950798877 @default.
- W2908202403 cites W2963784900 @default.
- W2908202403 cites W3099236691 @default.
- W2908202403 cites W4213151958 @default.
- W2908202403 doi "https://doi.org/10.1021/acsenergylett.8b02451" @default.
- W2908202403 hasPublicationYear "2019" @default.
- W2908202403 type Work @default.
- W2908202403 sameAs 2908202403 @default.
- W2908202403 citedByCount "71" @default.
- W2908202403 countsByYear W29082024032019 @default.
- W2908202403 countsByYear W29082024032020 @default.
- W2908202403 countsByYear W29082024032021 @default.
- W2908202403 countsByYear W29082024032022 @default.
- W2908202403 countsByYear W29082024032023 @default.
- W2908202403 crossrefType "journal-article" @default.
- W2908202403 hasAuthorship W2908202403A5027721961 @default.
- W2908202403 hasAuthorship W2908202403A5070387416 @default.
- W2908202403 hasAuthorship W2908202403A5084153516 @default.
- W2908202403 hasAuthorship W2908202403A5085419621 @default.
- W2908202403 hasConcept C112887158 @default.
- W2908202403 hasConcept C127413603 @default.
- W2908202403 hasConcept C155011858 @default.
- W2908202403 hasConcept C159985019 @default.
- W2908202403 hasConcept C161790260 @default.
- W2908202403 hasConcept C178790620 @default.
- W2908202403 hasConcept C179104552 @default.
- W2908202403 hasConcept C185592680 @default.
- W2908202403 hasConcept C192562407 @default.
- W2908202403 hasConcept C201194858 @default.
- W2908202403 hasConcept C2778648169 @default.
- W2908202403 hasConcept C2778870691 @default.
- W2908202403 hasConcept C2779485729 @default.
- W2908202403 hasConcept C2911146268 @default.
- W2908202403 hasConcept C32909587 @default.
- W2908202403 hasConcept C42360764 @default.
- W2908202403 hasConceptScore W2908202403C112887158 @default.
- W2908202403 hasConceptScore W2908202403C127413603 @default.
- W2908202403 hasConceptScore W2908202403C155011858 @default.
- W2908202403 hasConceptScore W2908202403C159985019 @default.
- W2908202403 hasConceptScore W2908202403C161790260 @default.
- W2908202403 hasConceptScore W2908202403C178790620 @default.