Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908202417> ?p ?o ?g. }
- W2908202417 abstract "We develop a supervised machine learning algorithm that is able to learn topological phases of finite condensed-matter systems from bulk data in real lattice space. The algorithm employs diagonalization in real space together with any supervised learning algorithm to learn topological phases through an eigenvector ensembling procedure. We combine our algorithm with decision trees and random forests to successfully recover topological phase diagrams of Su-Schrieffer-Heeger (SSH) models from bulk lattice data in real space and show how the Shannon information entropy of ensembles of lattice eigenvectors can be used to retrieve a signal detailing how topological information is distributed in the bulk. We further use insights obtained from these information entropy signatures to engineer global topological features from real-space lattice data that still carry most of the topological information in the lattice, while greatly diminishing the size of feature space, thus effectively amounting to a topological lattice compression. Finally, we explore the theoretical possibility of interpreting the information entropy topological signatures in terms of emergent information entropy wave functions, which lead us to Heisenberg and Hirschman uncertainty relations for topological phase transitions. The discovery of Shannon information entropy signals associated with topological phase transitions from the analysis of data from several thousand SSH systems illustrates how model explainability in machine learning can advance the research of exotic quantum materials with properties that may power future technological applications such as qubit engineering for quantum computing." @default.
- W2908202417 created "2019-01-11" @default.
- W2908202417 creator A5002689312 @default.
- W2908202417 creator A5041981465 @default.
- W2908202417 date "2020-08-26" @default.
- W2908202417 modified "2023-09-24" @default.
- W2908202417 title "Machine learning topological phases in real space" @default.
- W2908202417 cites W1501955150 @default.
- W2908202417 cites W1508600475 @default.
- W2908202417 cites W1605376869 @default.
- W2908202417 cites W1991566301 @default.
- W2908202417 cites W1997972857 @default.
- W2908202417 cites W1999436089 @default.
- W2908202417 cites W2004279045 @default.
- W2908202417 cites W2033808935 @default.
- W2908202417 cites W2072703702 @default.
- W2908202417 cites W2102074887 @default.
- W2908202417 cites W2104871713 @default.
- W2908202417 cites W2122210511 @default.
- W2908202417 cites W2125003829 @default.
- W2908202417 cites W2141240101 @default.
- W2908202417 cites W2175118067 @default.
- W2908202417 cites W2266303867 @default.
- W2908202417 cites W2337082154 @default.
- W2908202417 cites W2337197028 @default.
- W2908202417 cites W2404828167 @default.
- W2908202417 cites W2414456771 @default.
- W2908202417 cites W2463639880 @default.
- W2908202417 cites W2464969954 @default.
- W2908202417 cites W2470570791 @default.
- W2908202417 cites W2516533688 @default.
- W2908202417 cites W2527487499 @default.
- W2908202417 cites W2531147647 @default.
- W2908202417 cites W2548521319 @default.
- W2908202417 cites W2563240863 @default.
- W2908202417 cites W2612065714 @default.
- W2908202417 cites W2618945100 @default.
- W2908202417 cites W2743836945 @default.
- W2908202417 cites W2750673150 @default.
- W2908202417 cites W2756000556 @default.
- W2908202417 cites W2766323574 @default.
- W2908202417 cites W2769287225 @default.
- W2908202417 cites W2782602751 @default.
- W2908202417 cites W2786913988 @default.
- W2908202417 cites W2789149195 @default.
- W2908202417 cites W2795407028 @default.
- W2908202417 cites W2803328959 @default.
- W2908202417 cites W2911964244 @default.
- W2908202417 cites W2942577822 @default.
- W2908202417 cites W2945526235 @default.
- W2908202417 cites W3099183680 @default.
- W2908202417 cites W3101113424 @default.
- W2908202417 cites W3102897980 @default.
- W2908202417 cites W3104239185 @default.
- W2908202417 cites W3105130272 @default.
- W2908202417 cites W3106234770 @default.
- W2908202417 cites W3112028493 @default.
- W2908202417 doi "https://doi.org/10.1103/physrevb.102.054107" @default.
- W2908202417 hasPublicationYear "2020" @default.
- W2908202417 type Work @default.
- W2908202417 sameAs 2908202417 @default.
- W2908202417 citedByCount "24" @default.
- W2908202417 countsByYear W29082024172019 @default.
- W2908202417 countsByYear W29082024172020 @default.
- W2908202417 countsByYear W29082024172021 @default.
- W2908202417 countsByYear W29082024172022 @default.
- W2908202417 countsByYear W29082024172023 @default.
- W2908202417 crossrefType "journal-article" @default.
- W2908202417 hasAuthorship W2908202417A5002689312 @default.
- W2908202417 hasAuthorship W2908202417A5041981465 @default.
- W2908202417 hasBestOaLocation W29082024172 @default.
- W2908202417 hasConcept C106301342 @default.
- W2908202417 hasConcept C11413529 @default.
- W2908202417 hasConcept C114614502 @default.
- W2908202417 hasConcept C118615104 @default.
- W2908202417 hasConcept C121332964 @default.
- W2908202417 hasConcept C140936041 @default.
- W2908202417 hasConcept C184720557 @default.
- W2908202417 hasConcept C24890656 @default.
- W2908202417 hasConcept C2776477805 @default.
- W2908202417 hasConcept C2780350623 @default.
- W2908202417 hasConcept C2781204021 @default.
- W2908202417 hasConcept C33923547 @default.
- W2908202417 hasConcept C41008148 @default.
- W2908202417 hasConcept C45646460 @default.
- W2908202417 hasConcept C47776270 @default.
- W2908202417 hasConcept C62520636 @default.
- W2908202417 hasConcept C81332173 @default.
- W2908202417 hasConcept C84114770 @default.
- W2908202417 hasConceptScore W2908202417C106301342 @default.
- W2908202417 hasConceptScore W2908202417C11413529 @default.
- W2908202417 hasConceptScore W2908202417C114614502 @default.
- W2908202417 hasConceptScore W2908202417C118615104 @default.
- W2908202417 hasConceptScore W2908202417C121332964 @default.
- W2908202417 hasConceptScore W2908202417C140936041 @default.
- W2908202417 hasConceptScore W2908202417C184720557 @default.
- W2908202417 hasConceptScore W2908202417C24890656 @default.
- W2908202417 hasConceptScore W2908202417C2776477805 @default.
- W2908202417 hasConceptScore W2908202417C2780350623 @default.
- W2908202417 hasConceptScore W2908202417C2781204021 @default.