Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908237614> ?p ?o ?g. }
- W2908237614 endingPage "977" @default.
- W2908237614 startingPage "962" @default.
- W2908237614 abstract "Abstract Prediction of the peak break‐up water level, which is the maximum instantaneous stage during ice break‐up, is desirable to allow effective ice flood mitigation, but traditional hydrologic flood routing techniques are not efficient in addressing the large uncertainties caused by numerous factors driving the peak break‐up water level. This research provides a probability prediction framework based on vine copulas. The predictor variables of the peak break‐up water level are first chosen, the pair copula structure is then constructed by using vine copulas, the conditional density distribution function is derived to perform a probability prediction, and the peak break‐up water level value can then be estimated from the conditional density distribution function given the conditional probability and fixed values of the predictor variables. This approach is exemplified using data from 1957 to 2005 for the Toudaoguai and Sanhuhekou stations, which are located in the Inner Mongolia Reach of the Yellow River, and the calibration and validation periods are divided at 1986. The mean curve of the peak break‐up water level estimated from the conditional distribution function can capture the tendency of the observed series at both the Toudaoguai and Sanhuhekou stations, and more than 90% of the observed values fall within the 90% prediction uncertainty bands, which are approximately twice the standard deviation of the observed series. The probability prediction results for the validation period are consistent with those for the calibration period when the nonstationarity of the marginal distributions for the Sanhuhekou station are considered. Compared with multiple linear regression results, the uncertainty bands from the conditional distribution function are much narrower; moreover, the conditional distribution function is more capable of addressing the nonstationarity of predictor variables, and the conclusions are confirmed by jackknife analysis. Scenario predictions for cases in which the peak break‐up water level is likely to be higher than the bankfull water level can also be conducted based on the conditional distribution function, with good performance for the two stations." @default.
- W2908237614 created "2019-01-11" @default.
- W2908237614 creator A5006518820 @default.
- W2908237614 creator A5031203058 @default.
- W2908237614 creator A5031804038 @default.
- W2908237614 creator A5033493295 @default.
- W2908237614 creator A5057578208 @default.
- W2908237614 creator A5071458554 @default.
- W2908237614 date "2019-01-15" @default.
- W2908237614 modified "2023-10-17" @default.
- W2908237614 title "Probability prediction of peak break‐up water level through vine copulas" @default.
- W2908237614 cites W1492840752 @default.
- W2908237614 cites W1535642730 @default.
- W2908237614 cites W1544662260 @default.
- W2908237614 cites W1622789247 @default.
- W2908237614 cites W1624356652 @default.
- W2908237614 cites W1657787756 @default.
- W2908237614 cites W1733606568 @default.
- W2908237614 cites W1857243994 @default.
- W2908237614 cites W1911601650 @default.
- W2908237614 cites W1964513767 @default.
- W2908237614 cites W1965817835 @default.
- W2908237614 cites W1977819274 @default.
- W2908237614 cites W1981663278 @default.
- W2908237614 cites W1985503671 @default.
- W2908237614 cites W1992105816 @default.
- W2908237614 cites W2007619494 @default.
- W2908237614 cites W2010894607 @default.
- W2908237614 cites W2013502396 @default.
- W2908237614 cites W2015339214 @default.
- W2908237614 cites W2019667305 @default.
- W2908237614 cites W2024737169 @default.
- W2908237614 cites W2027118484 @default.
- W2908237614 cites W2027212713 @default.
- W2908237614 cites W2028544657 @default.
- W2908237614 cites W2028959226 @default.
- W2908237614 cites W2034183284 @default.
- W2908237614 cites W2034546430 @default.
- W2908237614 cites W2034774376 @default.
- W2908237614 cites W2037162451 @default.
- W2908237614 cites W2041355796 @default.
- W2908237614 cites W2043838615 @default.
- W2908237614 cites W2045374810 @default.
- W2908237614 cites W2048534547 @default.
- W2908237614 cites W2060949406 @default.
- W2908237614 cites W2061344134 @default.
- W2908237614 cites W2061822858 @default.
- W2908237614 cites W2063847475 @default.
- W2908237614 cites W2066323506 @default.
- W2908237614 cites W2071591206 @default.
- W2908237614 cites W2074382340 @default.
- W2908237614 cites W2074407461 @default.
- W2908237614 cites W2078484269 @default.
- W2908237614 cites W2078630254 @default.
- W2908237614 cites W2095720896 @default.
- W2908237614 cites W2101443105 @default.
- W2908237614 cites W2106360815 @default.
- W2908237614 cites W2107442739 @default.
- W2908237614 cites W2139833529 @default.
- W2908237614 cites W2201773709 @default.
- W2908237614 cites W2219763392 @default.
- W2908237614 cites W2235514880 @default.
- W2908237614 cites W2778094897 @default.
- W2908237614 cites W88021768 @default.
- W2908237614 doi "https://doi.org/10.1002/hyp.13377" @default.
- W2908237614 hasPublicationYear "2019" @default.
- W2908237614 type Work @default.
- W2908237614 sameAs 2908237614 @default.
- W2908237614 citedByCount "12" @default.
- W2908237614 countsByYear W29082376142020 @default.
- W2908237614 countsByYear W29082376142021 @default.
- W2908237614 countsByYear W29082376142022 @default.
- W2908237614 countsByYear W29082376142023 @default.
- W2908237614 crossrefType "journal-article" @default.
- W2908237614 hasAuthorship W2908237614A5006518820 @default.
- W2908237614 hasAuthorship W2908237614A5031203058 @default.
- W2908237614 hasAuthorship W2908237614A5031804038 @default.
- W2908237614 hasAuthorship W2908237614A5033493295 @default.
- W2908237614 hasAuthorship W2908237614A5057578208 @default.
- W2908237614 hasAuthorship W2908237614A5071458554 @default.
- W2908237614 hasConcept C103784038 @default.
- W2908237614 hasConcept C105795698 @default.
- W2908237614 hasConcept C122123141 @default.
- W2908237614 hasConcept C149441793 @default.
- W2908237614 hasConcept C149782125 @default.
- W2908237614 hasConcept C161584116 @default.
- W2908237614 hasConcept C165216359 @default.
- W2908237614 hasConcept C165838908 @default.
- W2908237614 hasConcept C17618745 @default.
- W2908237614 hasConcept C197055811 @default.
- W2908237614 hasConcept C22679943 @default.
- W2908237614 hasConcept C2779676228 @default.
- W2908237614 hasConcept C33923547 @default.
- W2908237614 hasConcept C39432304 @default.
- W2908237614 hasConcept C43555835 @default.
- W2908237614 hasConcept C44492722 @default.
- W2908237614 hasConceptScore W2908237614C103784038 @default.
- W2908237614 hasConceptScore W2908237614C105795698 @default.