Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908285010> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2908285010 abstract "Nowadays it is the era of intelligent machine. With the advancement of artificial intelligent, machine learning and deep learning, machines have started to impersonate as human. Conversational software agents activated by natural language processing is known as chatbot, are an excellent example of such machine. This paper presents a survey on existing chatbots and techniques applied into it. It discusses the similarities, differences and limitations of the existing chatbots. We compared 11 most popular chatbot application systems along with functionalities and technical specifications. Research showed that nearly 75% of customers have experienced poor customer service and generation of meaningful, long and informative responses remains a challenging task. In the past, methods for developing chatbots have relied on hand-written rules and templates. With the rise of deep learning these models were quickly replaced by end-to-end neural networks. More specifically, Deep Neural Networks is a powerful generative-based model to solve the conversational response generation problems. This paper conducted an in-depth survey of recent literature, examining over 70 publications related to chatbots published in the last 5 years. Based on literature review, this study made a comparison from selected papers according to method adopted. This paper also presented why current chatbot models fails to take into account when generating responses and how this affects the quality conversation." @default.
- W2908285010 created "2019-01-11" @default.
- W2908285010 creator A5037781147 @default.
- W2908285010 creator A5048583478 @default.
- W2908285010 date "2018-10-01" @default.
- W2908285010 modified "2023-10-04" @default.
- W2908285010 title "A Survey on Chatbot Implementation in Customer Service Industry through Deep Neural Networks" @default.
- W2908285010 cites W130013048 @default.
- W2908285010 cites W1974214338 @default.
- W2908285010 cites W2473329891 @default.
- W2908285010 cites W2487816651 @default.
- W2908285010 cites W2541319115 @default.
- W2908285010 cites W2620758414 @default.
- W2908285010 cites W3101817723 @default.
- W2908285010 cites W4236521339 @default.
- W2908285010 cites W4290742115 @default.
- W2908285010 doi "https://doi.org/10.1109/icebe.2018.00019" @default.
- W2908285010 hasPublicationYear "2018" @default.
- W2908285010 type Work @default.
- W2908285010 sameAs 2908285010 @default.
- W2908285010 citedByCount "101" @default.
- W2908285010 countsByYear W29082850102019 @default.
- W2908285010 countsByYear W29082850102020 @default.
- W2908285010 countsByYear W29082850102021 @default.
- W2908285010 countsByYear W29082850102022 @default.
- W2908285010 countsByYear W29082850102023 @default.
- W2908285010 crossrefType "proceedings-article" @default.
- W2908285010 hasAuthorship W2908285010A5037781147 @default.
- W2908285010 hasAuthorship W2908285010A5048583478 @default.
- W2908285010 hasConcept C108583219 @default.
- W2908285010 hasConcept C119857082 @default.
- W2908285010 hasConcept C136264566 @default.
- W2908285010 hasConcept C138885662 @default.
- W2908285010 hasConcept C154945302 @default.
- W2908285010 hasConcept C162324750 @default.
- W2908285010 hasConcept C2522767166 @default.
- W2908285010 hasConcept C2777200299 @default.
- W2908285010 hasConcept C2779041454 @default.
- W2908285010 hasConcept C2780378061 @default.
- W2908285010 hasConcept C41008148 @default.
- W2908285010 hasConcept C41895202 @default.
- W2908285010 hasConcept C50644808 @default.
- W2908285010 hasConcept C66402592 @default.
- W2908285010 hasConceptScore W2908285010C108583219 @default.
- W2908285010 hasConceptScore W2908285010C119857082 @default.
- W2908285010 hasConceptScore W2908285010C136264566 @default.
- W2908285010 hasConceptScore W2908285010C138885662 @default.
- W2908285010 hasConceptScore W2908285010C154945302 @default.
- W2908285010 hasConceptScore W2908285010C162324750 @default.
- W2908285010 hasConceptScore W2908285010C2522767166 @default.
- W2908285010 hasConceptScore W2908285010C2777200299 @default.
- W2908285010 hasConceptScore W2908285010C2779041454 @default.
- W2908285010 hasConceptScore W2908285010C2780378061 @default.
- W2908285010 hasConceptScore W2908285010C41008148 @default.
- W2908285010 hasConceptScore W2908285010C41895202 @default.
- W2908285010 hasConceptScore W2908285010C50644808 @default.
- W2908285010 hasConceptScore W2908285010C66402592 @default.
- W2908285010 hasLocation W29082850101 @default.
- W2908285010 hasOpenAccess W2908285010 @default.
- W2908285010 hasPrimaryLocation W29082850101 @default.
- W2908285010 hasRelatedWork W2584429674 @default.
- W2908285010 hasRelatedWork W2741836081 @default.
- W2908285010 hasRelatedWork W2938313464 @default.
- W2908285010 hasRelatedWork W3133593829 @default.
- W2908285010 hasRelatedWork W3153922349 @default.
- W2908285010 hasRelatedWork W3192794374 @default.
- W2908285010 hasRelatedWork W4200259088 @default.
- W2908285010 hasRelatedWork W4211165872 @default.
- W2908285010 hasRelatedWork W4214840481 @default.
- W2908285010 hasRelatedWork W4254256218 @default.
- W2908285010 isParatext "false" @default.
- W2908285010 isRetracted "false" @default.
- W2908285010 magId "2908285010" @default.
- W2908285010 workType "article" @default.