Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908320224> ?p ?o ?g. }
- W2908320224 endingPage "586" @default.
- W2908320224 startingPage "574" @default.
- W2908320224 abstract "The application of the convolutional neural network has shown to greatly improve the accuracy of building extraction from remote sensing imagery. In this paper, we created and made open a high-quality multisource data set for building detection, evaluated the accuracy obtained in most recent studies on the data set, demonstrated the use of our data set, and proposed a Siamese fully convolutional network model that obtained better segmentation accuracy. The building data set that we created contains not only aerial images but also satellite images covering 1000 km <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> with both raster labels and vector maps. The accuracy of applying the same methodology to our aerial data set outperformed several other open building data sets. On the aerial data set, we gave a thorough evaluation and comparison of most recent deep learning-based methods, and proposed a Siamese U-Net with shared weights in two branches, and original images and their down-sampled counterparts as inputs, which significantly improves the segmentation accuracy, especially for large buildings. For multisource building extraction, the generalization ability is further evaluated and extended by applying a radiometric augmentation strategy to transfer pretrained models on the aerial data set to the satellite data set. The designed experiments indicate our data set is accurate and can serve multiple purposes including building instance segmentation and change detection; our result shows the Siamese U-Net outperforms current building extraction methods and could provide valuable reference." @default.
- W2908320224 created "2019-01-11" @default.
- W2908320224 creator A5031588692 @default.
- W2908320224 creator A5078532329 @default.
- W2908320224 creator A5083392154 @default.
- W2908320224 date "2019-01-01" @default.
- W2908320224 modified "2023-10-09" @default.
- W2908320224 title "Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set" @default.
- W2908320224 cites W1677182931 @default.
- W2908320224 cites W1745334888 @default.
- W2908320224 cites W1903029394 @default.
- W2908320224 cites W1955055330 @default.
- W2908320224 cites W1964630290 @default.
- W2908320224 cites W2055702796 @default.
- W2908320224 cites W2097117768 @default.
- W2908320224 cites W2107053193 @default.
- W2908320224 cites W2108598243 @default.
- W2908320224 cites W2141573384 @default.
- W2908320224 cites W2158393484 @default.
- W2908320224 cites W2168548458 @default.
- W2908320224 cites W2184175677 @default.
- W2908320224 cites W2293078015 @default.
- W2908320224 cites W2305745203 @default.
- W2908320224 cites W2538244214 @default.
- W2908320224 cites W2609402060 @default.
- W2908320224 cites W2615988339 @default.
- W2908320224 cites W2755226765 @default.
- W2908320224 cites W2773307537 @default.
- W2908320224 cites W2790741584 @default.
- W2908320224 cites W2794905319 @default.
- W2908320224 cites W2963150697 @default.
- W2908320224 cites W2963881378 @default.
- W2908320224 cites W3105127913 @default.
- W2908320224 cites W4233295561 @default.
- W2908320224 doi "https://doi.org/10.1109/tgrs.2018.2858817" @default.
- W2908320224 hasPublicationYear "2019" @default.
- W2908320224 type Work @default.
- W2908320224 sameAs 2908320224 @default.
- W2908320224 citedByCount "589" @default.
- W2908320224 countsByYear W29083202242018 @default.
- W2908320224 countsByYear W29083202242019 @default.
- W2908320224 countsByYear W29083202242020 @default.
- W2908320224 countsByYear W29083202242021 @default.
- W2908320224 countsByYear W29083202242022 @default.
- W2908320224 countsByYear W29083202242023 @default.
- W2908320224 crossrefType "journal-article" @default.
- W2908320224 hasAuthorship W2908320224A5031588692 @default.
- W2908320224 hasAuthorship W2908320224A5078532329 @default.
- W2908320224 hasAuthorship W2908320224A5083392154 @default.
- W2908320224 hasConcept C108583219 @default.
- W2908320224 hasConcept C115961682 @default.
- W2908320224 hasConcept C124101348 @default.
- W2908320224 hasConcept C134306372 @default.
- W2908320224 hasConcept C153180895 @default.
- W2908320224 hasConcept C154945302 @default.
- W2908320224 hasConcept C177148314 @default.
- W2908320224 hasConcept C177264268 @default.
- W2908320224 hasConcept C181844469 @default.
- W2908320224 hasConcept C199360897 @default.
- W2908320224 hasConcept C205649164 @default.
- W2908320224 hasConcept C2776429412 @default.
- W2908320224 hasConcept C2778102629 @default.
- W2908320224 hasConcept C33923547 @default.
- W2908320224 hasConcept C41008148 @default.
- W2908320224 hasConcept C58489278 @default.
- W2908320224 hasConcept C60478076 @default.
- W2908320224 hasConcept C62649853 @default.
- W2908320224 hasConcept C81363708 @default.
- W2908320224 hasConcept C89600930 @default.
- W2908320224 hasConceptScore W2908320224C108583219 @default.
- W2908320224 hasConceptScore W2908320224C115961682 @default.
- W2908320224 hasConceptScore W2908320224C124101348 @default.
- W2908320224 hasConceptScore W2908320224C134306372 @default.
- W2908320224 hasConceptScore W2908320224C153180895 @default.
- W2908320224 hasConceptScore W2908320224C154945302 @default.
- W2908320224 hasConceptScore W2908320224C177148314 @default.
- W2908320224 hasConceptScore W2908320224C177264268 @default.
- W2908320224 hasConceptScore W2908320224C181844469 @default.
- W2908320224 hasConceptScore W2908320224C199360897 @default.
- W2908320224 hasConceptScore W2908320224C205649164 @default.
- W2908320224 hasConceptScore W2908320224C2776429412 @default.
- W2908320224 hasConceptScore W2908320224C2778102629 @default.
- W2908320224 hasConceptScore W2908320224C33923547 @default.
- W2908320224 hasConceptScore W2908320224C41008148 @default.
- W2908320224 hasConceptScore W2908320224C58489278 @default.
- W2908320224 hasConceptScore W2908320224C60478076 @default.
- W2908320224 hasConceptScore W2908320224C62649853 @default.
- W2908320224 hasConceptScore W2908320224C81363708 @default.
- W2908320224 hasConceptScore W2908320224C89600930 @default.
- W2908320224 hasFunder F4320321001 @default.
- W2908320224 hasIssue "1" @default.
- W2908320224 hasLocation W29083202241 @default.
- W2908320224 hasOpenAccess W2908320224 @default.
- W2908320224 hasPrimaryLocation W29083202241 @default.
- W2908320224 hasRelatedWork W2732542196 @default.
- W2908320224 hasRelatedWork W2738221750 @default.
- W2908320224 hasRelatedWork W2795329967 @default.
- W2908320224 hasRelatedWork W3095523211 @default.