Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908396379> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2908396379 endingPage "158" @default.
- W2908396379 startingPage "154" @default.
- W2908396379 abstract "One of the challenges within the area of optimisation, and AI in general, is to be able to support the automated creation of the heuristics that are often needed within effective algorithms. Such an example of automated programming may be performed by search within a space of heuristics that will be applied to a target domain. In this, brief proof-of-concept, paper, we consider the case of online bin-packing as the target domain, and consider the potential for machine learning methods to aid the associated automated programming problem. Simple numerical ‘policy matrices’ are used to represent heuristics, or ‘dispatch policies’, controlling the placement of item into bins as they arrive. We report on an initial investigation of the potential for neural nets to analyse and classify the resulting ‘policy matrices’, and find strong evidence that simple nets can be trained to learn to predict which heuristics, expressed as policy matrices, exhibit better or worse fitness. This gives the potential for them to be used as a surrogate fitness function to enhance the usage of search algorithms for finding heuristics. It also supports the prospect of using machine learning to extract the patterns that lead to successful heuristics, and so generate explanations and understanding of machine-generated heuristics." @default.
- W2908396379 created "2019-01-11" @default.
- W2908396379 creator A5020026827 @default.
- W2908396379 creator A5049853918 @default.
- W2908396379 creator A5073929818 @default.
- W2908396379 date "2018-12-31" @default.
- W2908396379 modified "2023-10-17" @default.
- W2908396379 title "Learning the Quality of Dispatch Heuristics Generated by Automated Programming" @default.
- W2908396379 cites W2025369528 @default.
- W2908396379 cites W2164330572 @default.
- W2908396379 cites W2171341281 @default.
- W2908396379 cites W2464289836 @default.
- W2908396379 doi "https://doi.org/10.1007/978-3-030-05348-2_13" @default.
- W2908396379 hasPublicationYear "2018" @default.
- W2908396379 type Work @default.
- W2908396379 sameAs 2908396379 @default.
- W2908396379 citedByCount "0" @default.
- W2908396379 crossrefType "book-chapter" @default.
- W2908396379 hasAuthorship W2908396379A5020026827 @default.
- W2908396379 hasAuthorship W2908396379A5049853918 @default.
- W2908396379 hasAuthorship W2908396379A5073929818 @default.
- W2908396379 hasBestOaLocation W29083963792 @default.
- W2908396379 hasConcept C111472728 @default.
- W2908396379 hasConcept C111919701 @default.
- W2908396379 hasConcept C11413529 @default.
- W2908396379 hasConcept C119857082 @default.
- W2908396379 hasConcept C126255220 @default.
- W2908396379 hasConcept C127705205 @default.
- W2908396379 hasConcept C134306372 @default.
- W2908396379 hasConcept C138885662 @default.
- W2908396379 hasConcept C154945302 @default.
- W2908396379 hasConcept C156273044 @default.
- W2908396379 hasConcept C2780586882 @default.
- W2908396379 hasConcept C33923547 @default.
- W2908396379 hasConcept C36503486 @default.
- W2908396379 hasConcept C41008148 @default.
- W2908396379 hasConcept C87219788 @default.
- W2908396379 hasConceptScore W2908396379C111472728 @default.
- W2908396379 hasConceptScore W2908396379C111919701 @default.
- W2908396379 hasConceptScore W2908396379C11413529 @default.
- W2908396379 hasConceptScore W2908396379C119857082 @default.
- W2908396379 hasConceptScore W2908396379C126255220 @default.
- W2908396379 hasConceptScore W2908396379C127705205 @default.
- W2908396379 hasConceptScore W2908396379C134306372 @default.
- W2908396379 hasConceptScore W2908396379C138885662 @default.
- W2908396379 hasConceptScore W2908396379C154945302 @default.
- W2908396379 hasConceptScore W2908396379C156273044 @default.
- W2908396379 hasConceptScore W2908396379C2780586882 @default.
- W2908396379 hasConceptScore W2908396379C33923547 @default.
- W2908396379 hasConceptScore W2908396379C36503486 @default.
- W2908396379 hasConceptScore W2908396379C41008148 @default.
- W2908396379 hasConceptScore W2908396379C87219788 @default.
- W2908396379 hasLocation W29083963791 @default.
- W2908396379 hasLocation W29083963792 @default.
- W2908396379 hasOpenAccess W2908396379 @default.
- W2908396379 hasPrimaryLocation W29083963791 @default.
- W2908396379 hasRelatedWork W1536201437 @default.
- W2908396379 hasRelatedWork W1993399041 @default.
- W2908396379 hasRelatedWork W2017450662 @default.
- W2908396379 hasRelatedWork W2042249499 @default.
- W2908396379 hasRelatedWork W2043654534 @default.
- W2908396379 hasRelatedWork W2118055193 @default.
- W2908396379 hasRelatedWork W2187872975 @default.
- W2908396379 hasRelatedWork W2472009858 @default.
- W2908396379 hasRelatedWork W4211082341 @default.
- W2908396379 hasRelatedWork W4252122873 @default.
- W2908396379 isParatext "false" @default.
- W2908396379 isRetracted "false" @default.
- W2908396379 magId "2908396379" @default.
- W2908396379 workType "book-chapter" @default.