Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908461307> ?p ?o ?g. }
- W2908461307 abstract "Existing embedding methods for attributed networks aim at learning low-dimensional vector representations for nodes only but not for both nodes and attributes, resulting in the fact that they cannot capture the affinities between nodes and attributes. However, capturing such affinities is of great importance to the success of many real-world attributed network applications, such as attribute inference and user profiling. Accordingly, in this paper, we introduce a Co-embedding model for Attributed Networks (CAN), which learns low-dimensional representations of both attributes and nodes in the same semantic space such that the affinities between them can be effectively captured and measured. To obtain high-quality embeddings, we propose a variational auto-encoder that embeds each node and attribute with means and variances of Gaussian distributions. Experimental results on real-world networks demonstrate that our model yields excellent performance in a number of applications compared with state-of-the-art techniques." @default.
- W2908461307 created "2019-01-11" @default.
- W2908461307 creator A5000755750 @default.
- W2908461307 creator A5060335069 @default.
- W2908461307 creator A5073342482 @default.
- W2908461307 creator A5079383176 @default.
- W2908461307 date "2019-01-30" @default.
- W2908461307 modified "2023-10-17" @default.
- W2908461307 title "Co-Embedding Attributed Networks" @default.
- W2908461307 cites W2001331056 @default.
- W2908461307 cites W2046253692 @default.
- W2908461307 cites W2073587810 @default.
- W2908461307 cites W2090891622 @default.
- W2908461307 cites W2107933610 @default.
- W2908461307 cites W2393319904 @default.
- W2908461307 cites W2515937607 @default.
- W2908461307 cites W2583803680 @default.
- W2908461307 cites W2604942799 @default.
- W2908461307 cites W2613171001 @default.
- W2908461307 cites W2622489478 @default.
- W2908461307 cites W2623187518 @default.
- W2908461307 cites W2767500585 @default.
- W2908461307 cites W2782914678 @default.
- W2908461307 cites W2783673162 @default.
- W2908461307 cites W2808858103 @default.
- W2908461307 cites W2962756421 @default.
- W2908461307 cites W3104097132 @default.
- W2908461307 cites W3105705953 @default.
- W2908461307 cites W4291474301 @default.
- W2908461307 doi "https://doi.org/10.1145/3289600.3291015" @default.
- W2908461307 hasPublicationYear "2019" @default.
- W2908461307 type Work @default.
- W2908461307 sameAs 2908461307 @default.
- W2908461307 citedByCount "99" @default.
- W2908461307 countsByYear W29084613072019 @default.
- W2908461307 countsByYear W29084613072020 @default.
- W2908461307 countsByYear W29084613072021 @default.
- W2908461307 countsByYear W29084613072022 @default.
- W2908461307 countsByYear W29084613072023 @default.
- W2908461307 crossrefType "proceedings-article" @default.
- W2908461307 hasAuthorship W2908461307A5000755750 @default.
- W2908461307 hasAuthorship W2908461307A5060335069 @default.
- W2908461307 hasAuthorship W2908461307A5073342482 @default.
- W2908461307 hasAuthorship W2908461307A5079383176 @default.
- W2908461307 hasBestOaLocation W29084613072 @default.
- W2908461307 hasConcept C111919701 @default.
- W2908461307 hasConcept C121332964 @default.
- W2908461307 hasConcept C127413603 @default.
- W2908461307 hasConcept C13336665 @default.
- W2908461307 hasConcept C154945302 @default.
- W2908461307 hasConcept C163716315 @default.
- W2908461307 hasConcept C185592680 @default.
- W2908461307 hasConcept C187191949 @default.
- W2908461307 hasConcept C2524010 @default.
- W2908461307 hasConcept C2776214188 @default.
- W2908461307 hasConcept C2777472644 @default.
- W2908461307 hasConcept C2780283098 @default.
- W2908461307 hasConcept C2986420190 @default.
- W2908461307 hasConcept C33923547 @default.
- W2908461307 hasConcept C41008148 @default.
- W2908461307 hasConcept C41608201 @default.
- W2908461307 hasConcept C62520636 @default.
- W2908461307 hasConcept C62611344 @default.
- W2908461307 hasConcept C66938386 @default.
- W2908461307 hasConcept C71240020 @default.
- W2908461307 hasConcept C80444323 @default.
- W2908461307 hasConceptScore W2908461307C111919701 @default.
- W2908461307 hasConceptScore W2908461307C121332964 @default.
- W2908461307 hasConceptScore W2908461307C127413603 @default.
- W2908461307 hasConceptScore W2908461307C13336665 @default.
- W2908461307 hasConceptScore W2908461307C154945302 @default.
- W2908461307 hasConceptScore W2908461307C163716315 @default.
- W2908461307 hasConceptScore W2908461307C185592680 @default.
- W2908461307 hasConceptScore W2908461307C187191949 @default.
- W2908461307 hasConceptScore W2908461307C2524010 @default.
- W2908461307 hasConceptScore W2908461307C2776214188 @default.
- W2908461307 hasConceptScore W2908461307C2777472644 @default.
- W2908461307 hasConceptScore W2908461307C2780283098 @default.
- W2908461307 hasConceptScore W2908461307C2986420190 @default.
- W2908461307 hasConceptScore W2908461307C33923547 @default.
- W2908461307 hasConceptScore W2908461307C41008148 @default.
- W2908461307 hasConceptScore W2908461307C41608201 @default.
- W2908461307 hasConceptScore W2908461307C62520636 @default.
- W2908461307 hasConceptScore W2908461307C62611344 @default.
- W2908461307 hasConceptScore W2908461307C66938386 @default.
- W2908461307 hasConceptScore W2908461307C71240020 @default.
- W2908461307 hasConceptScore W2908461307C80444323 @default.
- W2908461307 hasLocation W29084613071 @default.
- W2908461307 hasLocation W29084613072 @default.
- W2908461307 hasOpenAccess W2908461307 @default.
- W2908461307 hasPrimaryLocation W29084613071 @default.
- W2908461307 hasRelatedWork W1572138509 @default.
- W2908461307 hasRelatedWork W2338752163 @default.
- W2908461307 hasRelatedWork W2511279186 @default.
- W2908461307 hasRelatedWork W2809546831 @default.
- W2908461307 hasRelatedWork W2908461307 @default.
- W2908461307 hasRelatedWork W2963058055 @default.
- W2908461307 hasRelatedWork W3208912374 @default.
- W2908461307 hasRelatedWork W3213113634 @default.
- W2908461307 hasRelatedWork W4210325777 @default.