Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908546219> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2908546219 endingPage "75" @default.
- W2908546219 startingPage "61" @default.
- W2908546219 abstract "In this work, we introduce a method of estimating stochastic freeway capacity using elements of both extreme value theory and survival analysis. First, we define capacity data, or estimates of the capacity of the roadway, as the daily maximum flow values. Then, under a survival analysis premise, we introduce censoring into our definition. That is, on days when flows are sufficiently high and congestion occurs, corresponding flow maxima are considered true estimates of capacity; otherwise, for those days that do not observe high flows or congestion, flow maxima are deemed censored observations and capacities must be higher than the observations. By extreme value theory, the collection of flow maxima (block maxima) can be appropriately approximated with a generalized extreme value (GEV) distribution. Because of small sample sizes and the presence of censoring, a Bayesian framework is pursued for model fitting and parameter estimation. To lend credence to our proposed methodology, the procedure is applied to real-world traffic stream data collected by the New Hampshire Department of Transportation (NHDOT) at a busy location on Interstate I-93 near Salem, New Hampshire. Data were collected over a period of 11 months and raw data were aggregated into 15-minute intervals. To assess our procedure, and to provide proof of concept, several validation procedures are presented. First, using distinct training and validation subsets of our data, the procedure yields accurate predictions of highway capacity. Next, our procedure is applied to a training set to yield random capacities which are then used to predict breakdown in the validation set. The frequency of these predicted breakdowns is found to be statistically similar to observed breakdowns observed in our validation set. Lastly, after comparing our methodology to other methods of stochastic capacity estimation, we find our procedure to be highly successful." @default.
- W2908546219 created "2019-01-25" @default.
- W2908546219 creator A5014440398 @default.
- W2908546219 creator A5044236307 @default.
- W2908546219 date "2018-12-31" @default.
- W2908546219 modified "2023-10-16" @default.
- W2908546219 title "Estimation of stochastic traffic capacity using extreme value theory and censoring: A case study in Salem, New Hampshire" @default.
- W2908546219 cites W1500657154 @default.
- W2908546219 cites W1517555081 @default.
- W2908546219 cites W1523410049 @default.
- W2908546219 cites W1564174329 @default.
- W2908546219 cites W1566333899 @default.
- W2908546219 cites W1966217856 @default.
- W2908546219 cites W1987475547 @default.
- W2908546219 cites W2001139752 @default.
- W2908546219 cites W2012152938 @default.
- W2908546219 cites W2013549738 @default.
- W2908546219 cites W2064238118 @default.
- W2908546219 cites W2068915883 @default.
- W2908546219 cites W2088211485 @default.
- W2908546219 cites W209280930 @default.
- W2908546219 cites W2093726459 @default.
- W2908546219 cites W2134242928 @default.
- W2908546219 cites W2139410611 @default.
- W2908546219 cites W2144956653 @default.
- W2908546219 cites W2155718420 @default.
- W2908546219 cites W2334672082 @default.
- W2908546219 cites W2479185124 @default.
- W2908546219 cites W2565924190 @default.
- W2908546219 cites W2569942622 @default.
- W2908546219 cites W2768838110 @default.
- W2908546219 cites W4232383088 @default.
- W2908546219 cites W4293241248 @default.
- W2908546219 cites W820471982 @default.
- W2908546219 doi "https://doi.org/10.5604/01.3001.0012.8366" @default.
- W2908546219 hasPublicationYear "2018" @default.
- W2908546219 type Work @default.
- W2908546219 sameAs 2908546219 @default.
- W2908546219 citedByCount "1" @default.
- W2908546219 countsByYear W29085462192022 @default.
- W2908546219 crossrefType "journal-article" @default.
- W2908546219 hasAuthorship W2908546219A5014440398 @default.
- W2908546219 hasAuthorship W2908546219A5044236307 @default.
- W2908546219 hasBestOaLocation W29085462191 @default.
- W2908546219 hasConcept C105795698 @default.
- W2908546219 hasConcept C107673813 @default.
- W2908546219 hasConcept C134306372 @default.
- W2908546219 hasConcept C137668524 @default.
- W2908546219 hasConcept C142362112 @default.
- W2908546219 hasConcept C147581598 @default.
- W2908546219 hasConcept C169707849 @default.
- W2908546219 hasConcept C185429906 @default.
- W2908546219 hasConcept C186633575 @default.
- W2908546219 hasConcept C207201462 @default.
- W2908546219 hasConcept C33923547 @default.
- W2908546219 hasConcept C41008148 @default.
- W2908546219 hasConcept C52119013 @default.
- W2908546219 hasConcept C554144382 @default.
- W2908546219 hasConcept C91528185 @default.
- W2908546219 hasConceptScore W2908546219C105795698 @default.
- W2908546219 hasConceptScore W2908546219C107673813 @default.
- W2908546219 hasConceptScore W2908546219C134306372 @default.
- W2908546219 hasConceptScore W2908546219C137668524 @default.
- W2908546219 hasConceptScore W2908546219C142362112 @default.
- W2908546219 hasConceptScore W2908546219C147581598 @default.
- W2908546219 hasConceptScore W2908546219C169707849 @default.
- W2908546219 hasConceptScore W2908546219C185429906 @default.
- W2908546219 hasConceptScore W2908546219C186633575 @default.
- W2908546219 hasConceptScore W2908546219C207201462 @default.
- W2908546219 hasConceptScore W2908546219C33923547 @default.
- W2908546219 hasConceptScore W2908546219C41008148 @default.
- W2908546219 hasConceptScore W2908546219C52119013 @default.
- W2908546219 hasConceptScore W2908546219C554144382 @default.
- W2908546219 hasConceptScore W2908546219C91528185 @default.
- W2908546219 hasIssue "48" @default.
- W2908546219 hasLocation W29085462191 @default.
- W2908546219 hasOpenAccess W2908546219 @default.
- W2908546219 hasPrimaryLocation W29085462191 @default.
- W2908546219 hasRelatedWork W2037848806 @default.
- W2908546219 hasRelatedWork W2125113233 @default.
- W2908546219 hasRelatedWork W219525140 @default.
- W2908546219 hasRelatedWork W2224349881 @default.
- W2908546219 hasRelatedWork W2237554759 @default.
- W2908546219 hasRelatedWork W2306668086 @default.
- W2908546219 hasRelatedWork W2757131674 @default.
- W2908546219 hasRelatedWork W2759538278 @default.
- W2908546219 hasRelatedWork W2797884465 @default.
- W2908546219 hasRelatedWork W3102637449 @default.
- W2908546219 hasVolume "4" @default.
- W2908546219 isParatext "false" @default.
- W2908546219 isRetracted "false" @default.
- W2908546219 magId "2908546219" @default.
- W2908546219 workType "article" @default.