Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908548636> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2908548636 abstract "Building upon my previous research on ‘The Rise of Big Data’, I can highlight the existence of a two-tier system of micro- and large-scale (big) data analytics. All companies that dominate local or neighbouring markets collect data at a micro-scale level for the purpose of predictive analytics, such as linear, including decision trees, vector, and cluster modelling. They use geo-demographic variables, such as income, age, and so on, and behavioural data to predict the target’s willingness to buy a particular product. Major retailers attempt to test their customers’ willingness to make certain purchases. Regularly, credit-rating companies use sample modelling to test the probability of fraud; insurance companies for the probability of claims; life insurance companies to estimate life expectancy; banks for the probability of a mortgage’s voluntary foreclosure; and so on. However, given the limited size of the sample, such predictive analytics may not prove accurate. In contrast, large-scale corporations that possess or harvest a large amount of big data may inter alia use raw data from the unstructured content of emails or the web for data mining purposes; machine-generated data; statistical software packages, such as IBM, Stata, Rapid Minder, Google’s open source software, Apache Hadoop, Revolution, and so on; and automated data that is a mix of data-driven and expert-derived rules to analyse big data. Software packages act as intelligent agents that allow for quick automation and processing of big data analytics.With the help of the quantitative and statistical analysis of big data, it is, however, possible to accurately measure the consumers’ willingness to pay for particular products, determine the elasticity of demand in response to price changes, observe trends in the life cycle of a product, identify under-performing products, and categorise customers. While the micro-scale behavioural modelling of data serves for the analysis and prediction of the risks associated with the use of targeted advertising and promotional campaigns, when the same modelling is being applied at a large-scale level to forecast customers’ demand, to predict product trends, and to make strategic pricing recommendations, the latter inevitably becomes part of a wider social experiment of intensive platform monitoring and data sharing with data analytics companies. Due to the size of the sample of participants due to be observed, the latter forecasts tend to be even more accurate and to reliably inform producers of estimated demand and future pricing options. I would argue that no marketing research harms consumers as long as the sample of the targeted consumers remains meaningful, but limited for a specific purpose. Otherwise, big data analytics is a perfect substitute for direct or indirect exchanges of strategic information regarding actual or future pricing methods; estimated demand; consumers’ preferences, location, investment; and so much more. However, larger companies or corporations are in a stronger position to extract strategic data that can later be exploited tactically, i.e., through targeted advertising, and strategically, by informing the price setting mechanism. Instead of a business-to-business exchange of information (B2B: ‘hub and spoke’ conspiracy), this large-scale marketing experiment moves on to the prospective consumers (B2C: track-and-monitor conspiracy). In my opinion, this phenomenon, which I have previously identified as a track-and-monitor conspiracy on the basis of consumers’ geographical location; socio-economic demographics, i.e., income status; and behavioural data, i.e., preferences and interests, allows for a pricing conspiracy to be implemented with the help of consumers rather than competitors. For example, consumers identified as living in remote areas, i.e., the Highlands or small islands, usually have less choice and can therefore be charged more for other terms and conditions, such as transportation costs. Knowing consumers’ category of income, businesses can more accurately predict their reservation price in terms of bargaining. It is similar to a meeting of minds between the buyer and the seller, where the latter knows how much the former is able to potentially spend." @default.
- W2908548636 created "2019-01-25" @default.
- W2908548636 creator A5050509131 @default.
- W2908548636 date "2018-12-07" @default.
- W2908548636 modified "2023-09-26" @default.
- W2908548636 title "Written evidence to HM Treasury's Digital Competition Expert Panel." @default.
- W2908548636 hasPublicationYear "2018" @default.
- W2908548636 type Work @default.
- W2908548636 sameAs 2908548636 @default.
- W2908548636 citedByCount "0" @default.
- W2908548636 crossrefType "journal-article" @default.
- W2908548636 hasAuthorship W2908548636A5050509131 @default.
- W2908548636 hasConcept C124101348 @default.
- W2908548636 hasConcept C144133560 @default.
- W2908548636 hasConcept C162118730 @default.
- W2908548636 hasConcept C162853370 @default.
- W2908548636 hasConcept C171250308 @default.
- W2908548636 hasConcept C185592680 @default.
- W2908548636 hasConcept C189076506 @default.
- W2908548636 hasConcept C192562407 @default.
- W2908548636 hasConcept C198531522 @default.
- W2908548636 hasConcept C2522767166 @default.
- W2908548636 hasConcept C26503482 @default.
- W2908548636 hasConcept C37952496 @default.
- W2908548636 hasConcept C41008148 @default.
- W2908548636 hasConcept C4216890 @default.
- W2908548636 hasConcept C43617362 @default.
- W2908548636 hasConcept C70388272 @default.
- W2908548636 hasConcept C75684735 @default.
- W2908548636 hasConcept C79158427 @default.
- W2908548636 hasConcept C83209312 @default.
- W2908548636 hasConceptScore W2908548636C124101348 @default.
- W2908548636 hasConceptScore W2908548636C144133560 @default.
- W2908548636 hasConceptScore W2908548636C162118730 @default.
- W2908548636 hasConceptScore W2908548636C162853370 @default.
- W2908548636 hasConceptScore W2908548636C171250308 @default.
- W2908548636 hasConceptScore W2908548636C185592680 @default.
- W2908548636 hasConceptScore W2908548636C189076506 @default.
- W2908548636 hasConceptScore W2908548636C192562407 @default.
- W2908548636 hasConceptScore W2908548636C198531522 @default.
- W2908548636 hasConceptScore W2908548636C2522767166 @default.
- W2908548636 hasConceptScore W2908548636C26503482 @default.
- W2908548636 hasConceptScore W2908548636C37952496 @default.
- W2908548636 hasConceptScore W2908548636C41008148 @default.
- W2908548636 hasConceptScore W2908548636C4216890 @default.
- W2908548636 hasConceptScore W2908548636C43617362 @default.
- W2908548636 hasConceptScore W2908548636C70388272 @default.
- W2908548636 hasConceptScore W2908548636C75684735 @default.
- W2908548636 hasConceptScore W2908548636C79158427 @default.
- W2908548636 hasConceptScore W2908548636C83209312 @default.
- W2908548636 hasLocation W29085486361 @default.
- W2908548636 hasOpenAccess W2908548636 @default.
- W2908548636 hasPrimaryLocation W29085486361 @default.
- W2908548636 hasRelatedWork W2036629690 @default.
- W2908548636 hasRelatedWork W2134121682 @default.
- W2908548636 hasRelatedWork W2206760069 @default.
- W2908548636 hasRelatedWork W2513214721 @default.
- W2908548636 hasRelatedWork W2552473631 @default.
- W2908548636 hasRelatedWork W2608019839 @default.
- W2908548636 hasRelatedWork W2742441636 @default.
- W2908548636 hasRelatedWork W2752192203 @default.
- W2908548636 hasRelatedWork W2777384855 @default.
- W2908548636 hasRelatedWork W2905437007 @default.
- W2908548636 hasRelatedWork W2910509867 @default.
- W2908548636 hasRelatedWork W2981330433 @default.
- W2908548636 hasRelatedWork W2993629224 @default.
- W2908548636 hasRelatedWork W3040141461 @default.
- W2908548636 hasRelatedWork W3099386891 @default.
- W2908548636 hasRelatedWork W3108263596 @default.
- W2908548636 hasRelatedWork W3122025521 @default.
- W2908548636 hasRelatedWork W3125663142 @default.
- W2908548636 hasRelatedWork W3205876445 @default.
- W2908548636 hasRelatedWork W2787044593 @default.
- W2908548636 isParatext "false" @default.
- W2908548636 isRetracted "false" @default.
- W2908548636 magId "2908548636" @default.
- W2908548636 workType "article" @default.