Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908603159> ?p ?o ?g. }
- W2908603159 endingPage "157" @default.
- W2908603159 startingPage "157" @default.
- W2908603159 abstract "Despite the usefulness of artificial neural networks (ANNs) in the study of various complex problems, ANNs have not been applied for modeling the geographic distribution of tuberculosis (TB) in the US. Likewise, ecological level researches on TB incidence rate at the national level are inadequate for epidemiologic inferences. We collected 278 exploratory variables including environmental and a broad range of socio-economic features for modeling the disease across the continental US. The spatial pattern of the disease distribution was statistically evaluated using the global Moran’s I, Getis–Ord General G, and local Gi* statistics. Next, we investigated the applicability of multilayer perceptron (MLP) ANN for predicting the disease incidence. To avoid overfitting, L1 regularization was used before developing the models. Predictive performance of the MLP was compared with linear regression for test dataset using root mean square error, mean absolute error, and correlations between model output and ground truth. Results of clustering analysis showed that there is a significant spatial clustering of smoothed TB incidence rate (p < 0.05) and the hotspots were mainly located in the southern and southeastern parts of the country. Among the developed models, single hidden layer MLP had the best test accuracy. Sensitivity analysis of the MLP model showed that immigrant population (proportion), underserved segments of the population, and minimum temperature were among the factors with the strongest contributions. The findings of this study can provide useful insight to health authorities on prioritizing resource allocation to risk-prone areas." @default.
- W2908603159 created "2019-01-25" @default.
- W2908603159 creator A5007040136 @default.
- W2908603159 creator A5066560413 @default.
- W2908603159 creator A5070857760 @default.
- W2908603159 creator A5080717937 @default.
- W2908603159 date "2019-01-08" @default.
- W2908603159 modified "2023-10-16" @default.
- W2908603159 title "A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States" @default.
- W2908603159 cites W105185758 @default.
- W2908603159 cites W1966396819 @default.
- W2908603159 cites W1966447062 @default.
- W2908603159 cites W1970276867 @default.
- W2908603159 cites W1976738075 @default.
- W2908603159 cites W1977177161 @default.
- W2908603159 cites W1984135183 @default.
- W2908603159 cites W1990541931 @default.
- W2908603159 cites W2010735452 @default.
- W2908603159 cites W2012002118 @default.
- W2908603159 cites W2017294844 @default.
- W2908603159 cites W2022511881 @default.
- W2908603159 cites W2023756471 @default.
- W2908603159 cites W2029765233 @default.
- W2908603159 cites W2036713095 @default.
- W2908603159 cites W2038049679 @default.
- W2908603159 cites W2051718091 @default.
- W2908603159 cites W2052611179 @default.
- W2908603159 cites W2052714879 @default.
- W2908603159 cites W2057262848 @default.
- W2908603159 cites W2063777002 @default.
- W2908603159 cites W2068109735 @default.
- W2908603159 cites W2075248163 @default.
- W2908603159 cites W2083117436 @default.
- W2908603159 cites W2088157920 @default.
- W2908603159 cites W2100599791 @default.
- W2908603159 cites W2100757327 @default.
- W2908603159 cites W2101095383 @default.
- W2908603159 cites W2105522334 @default.
- W2908603159 cites W2106186307 @default.
- W2908603159 cites W2109328159 @default.
- W2908603159 cites W2128349896 @default.
- W2908603159 cites W2131037869 @default.
- W2908603159 cites W2131586477 @default.
- W2908603159 cites W2135046866 @default.
- W2908603159 cites W2147330627 @default.
- W2908603159 cites W2149626550 @default.
- W2908603159 cites W2154185090 @default.
- W2908603159 cites W2155955992 @default.
- W2908603159 cites W2157638040 @default.
- W2908603159 cites W2158345094 @default.
- W2908603159 cites W2160421474 @default.
- W2908603159 cites W2160752276 @default.
- W2908603159 cites W2164907426 @default.
- W2908603159 cites W2165584380 @default.
- W2908603159 cites W2165936436 @default.
- W2908603159 cites W2169976759 @default.
- W2908603159 cites W2184114547 @default.
- W2908603159 cites W2278830514 @default.
- W2908603159 cites W2288888954 @default.
- W2908603159 cites W2313855395 @default.
- W2908603159 cites W2314003891 @default.
- W2908603159 cites W2590539493 @default.
- W2908603159 cites W2598901641 @default.
- W2908603159 cites W2606303276 @default.
- W2908603159 cites W2767593729 @default.
- W2908603159 cites W2769262470 @default.
- W2908603159 cites W2783825033 @default.
- W2908603159 cites W2791922323 @default.
- W2908603159 cites W2793842315 @default.
- W2908603159 cites W2890599451 @default.
- W2908603159 cites W2897916673 @default.
- W2908603159 cites W3014179099 @default.
- W2908603159 cites W42083586 @default.
- W2908603159 doi "https://doi.org/10.3390/ijerph16010157" @default.
- W2908603159 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6338935" @default.
- W2908603159 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30626123" @default.
- W2908603159 hasPublicationYear "2019" @default.
- W2908603159 type Work @default.
- W2908603159 sameAs 2908603159 @default.
- W2908603159 citedByCount "62" @default.
- W2908603159 countsByYear W29086031592019 @default.
- W2908603159 countsByYear W29086031592020 @default.
- W2908603159 countsByYear W29086031592021 @default.
- W2908603159 countsByYear W29086031592022 @default.
- W2908603159 countsByYear W29086031592023 @default.
- W2908603159 crossrefType "journal-article" @default.
- W2908603159 hasAuthorship W2908603159A5007040136 @default.
- W2908603159 hasAuthorship W2908603159A5066560413 @default.
- W2908603159 hasAuthorship W2908603159A5070857760 @default.
- W2908603159 hasAuthorship W2908603159A5080717937 @default.
- W2908603159 hasBestOaLocation W29086031591 @default.
- W2908603159 hasConcept C105795698 @default.
- W2908603159 hasConcept C119857082 @default.
- W2908603159 hasConcept C149782125 @default.
- W2908603159 hasConcept C154945302 @default.
- W2908603159 hasConcept C179717631 @default.
- W2908603159 hasConcept C205649164 @default.
- W2908603159 hasConcept C22019652 @default.