Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908655904> ?p ?o ?g. }
- W2908655904 abstract "Abstract With the development of modern computational science and data metrology, hyperspectral imaging technology has been utilized in the field of remote sensing for the application in precision agriculture and crop quality testing. In this paper, the near infrared hyperspectral imaging (NIRHSI) technique was applied to quantitatively determine the naringin content in pomelo peel samples. Model optimization was studied by investigating the influence of system measuring conditions and parameters of the built-up HSI instrumental system. The HSI data acquisition was built up using a prevalent pushbroom scanner in the near infrared region. Calibration models were established using the partial least squares (PLS) regression in the mode of cross validation, in combined use of the Savitzky-Golay smoother (SGS) for data pretreatment. These multivariate analytical models were optimized in comparison about the region of interest (ROI) for NIRHSI model optimization. In the process of NIRHSI data acquisition, the rational values of some system measurement parameters were also tuned and tested, such as the use of different watts for light intensity, different lenses and different materials as the scanning backgrounds. Results showed that the cross-validation PLS regression methods performed well in the calibration and prediction processes, working well together with the parameter tuning of the SGS pretreatment. In addition to the fact that different materials as the scanning backgrounds obviously affected the quantitative result, there is no apparent difference in the comparing cases of different light intensities and different lenses. This work validates the capability of applying NIRHSI technique to quantitative determine the content of naringin in pomelo peel samples. The test for model optimization by comparing the measurement parameters and the system properties has prospective application ability in fields of other spectral/hyperspectral data analysis. It is an important lab simulation of remote sensing. It contributes significant theoretical reference to the design of the large-scale online hyperspectral data acquisition systems." @default.
- W2908655904 created "2019-01-25" @default.
- W2908655904 creator A5008272151 @default.
- W2908655904 creator A5009982028 @default.
- W2908655904 creator A5057917454 @default.
- W2908655904 creator A5058327555 @default.
- W2908655904 creator A5060230528 @default.
- W2908655904 creator A5062491950 @default.
- W2908655904 date "2019-02-01" @default.
- W2908655904 modified "2023-10-13" @default.
- W2908655904 title "Study of modeling optimization for hyperspectral imaging quantitative determination of naringin content in pomelo peel" @default.
- W2908655904 cites W1011169223 @default.
- W2908655904 cites W1723611789 @default.
- W2908655904 cites W1974282645 @default.
- W2908655904 cites W1983709477 @default.
- W2908655904 cites W1990743281 @default.
- W2908655904 cites W2002481752 @default.
- W2908655904 cites W2003008699 @default.
- W2908655904 cites W2004298553 @default.
- W2908655904 cites W2012358846 @default.
- W2908655904 cites W2015415108 @default.
- W2908655904 cites W2019003441 @default.
- W2908655904 cites W2038550525 @default.
- W2908655904 cites W2042980460 @default.
- W2908655904 cites W2054224248 @default.
- W2908655904 cites W2077903554 @default.
- W2908655904 cites W2090416506 @default.
- W2908655904 cites W2094676407 @default.
- W2908655904 cites W2109606373 @default.
- W2908655904 cites W2130994761 @default.
- W2908655904 cites W2144792319 @default.
- W2908655904 cites W2155483316 @default.
- W2908655904 cites W2292285134 @default.
- W2908655904 cites W2491112938 @default.
- W2908655904 cites W2510243739 @default.
- W2908655904 cites W2521520872 @default.
- W2908655904 cites W2548878763 @default.
- W2908655904 cites W2560176777 @default.
- W2908655904 cites W2564727305 @default.
- W2908655904 cites W2575749027 @default.
- W2908655904 cites W2614738193 @default.
- W2908655904 cites W2735389452 @default.
- W2908655904 cites W2763487634 @default.
- W2908655904 cites W2765985738 @default.
- W2908655904 cites W2767164890 @default.
- W2908655904 cites W2777967210 @default.
- W2908655904 cites W2888693994 @default.
- W2908655904 cites W318468692 @default.
- W2908655904 doi "https://doi.org/10.1016/j.compag.2019.01.013" @default.
- W2908655904 hasPublicationYear "2019" @default.
- W2908655904 type Work @default.
- W2908655904 sameAs 2908655904 @default.
- W2908655904 citedByCount "4" @default.
- W2908655904 countsByYear W29086559042020 @default.
- W2908655904 countsByYear W29086559042021 @default.
- W2908655904 countsByYear W29086559042022 @default.
- W2908655904 crossrefType "journal-article" @default.
- W2908655904 hasAuthorship W2908655904A5008272151 @default.
- W2908655904 hasAuthorship W2908655904A5009982028 @default.
- W2908655904 hasAuthorship W2908655904A5057917454 @default.
- W2908655904 hasAuthorship W2908655904A5058327555 @default.
- W2908655904 hasAuthorship W2908655904A5060230528 @default.
- W2908655904 hasAuthorship W2908655904A5062491950 @default.
- W2908655904 hasConcept C105795698 @default.
- W2908655904 hasConcept C118518473 @default.
- W2908655904 hasConcept C119857082 @default.
- W2908655904 hasConcept C120217122 @default.
- W2908655904 hasConcept C127313418 @default.
- W2908655904 hasConcept C154945302 @default.
- W2908655904 hasConcept C159078339 @default.
- W2908655904 hasConcept C165838908 @default.
- W2908655904 hasConcept C186060115 @default.
- W2908655904 hasConcept C18903297 @default.
- W2908655904 hasConcept C22354355 @default.
- W2908655904 hasConcept C2779751349 @default.
- W2908655904 hasConcept C33923547 @default.
- W2908655904 hasConcept C41008148 @default.
- W2908655904 hasConcept C62649853 @default.
- W2908655904 hasConcept C86803240 @default.
- W2908655904 hasConceptScore W2908655904C105795698 @default.
- W2908655904 hasConceptScore W2908655904C118518473 @default.
- W2908655904 hasConceptScore W2908655904C119857082 @default.
- W2908655904 hasConceptScore W2908655904C120217122 @default.
- W2908655904 hasConceptScore W2908655904C127313418 @default.
- W2908655904 hasConceptScore W2908655904C154945302 @default.
- W2908655904 hasConceptScore W2908655904C159078339 @default.
- W2908655904 hasConceptScore W2908655904C165838908 @default.
- W2908655904 hasConceptScore W2908655904C186060115 @default.
- W2908655904 hasConceptScore W2908655904C18903297 @default.
- W2908655904 hasConceptScore W2908655904C22354355 @default.
- W2908655904 hasConceptScore W2908655904C2779751349 @default.
- W2908655904 hasConceptScore W2908655904C33923547 @default.
- W2908655904 hasConceptScore W2908655904C41008148 @default.
- W2908655904 hasConceptScore W2908655904C62649853 @default.
- W2908655904 hasConceptScore W2908655904C86803240 @default.
- W2908655904 hasFunder F4320321001 @default.
- W2908655904 hasFunder F4320321543 @default.
- W2908655904 hasLocation W29086559041 @default.
- W2908655904 hasOpenAccess W2908655904 @default.
- W2908655904 hasPrimaryLocation W29086559041 @default.