Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908729273> ?p ?o ?g. }
- W2908729273 abstract "We present a novel neural network architecture, termed Decomposer-Composer, for semantic structure-aware 3D shape modeling. Our method utilizes an auto-encoder-based pipeline, and produces a novel factorized shape embedding space, where the semantic structure of the shape collection translates into a data-dependent sub-space factorization, and where shape composition and decomposition become simple linear operations on the embedding coordinates. We further propose to model shape assembly using an explicit learned part deformation module, which utilizes a 3D spatial transformer network to perform an in-network volumetric grid deformation, and which allows us to train the whole system end-to-end. The resulting network allows us to perform part-level shape manipulation, unattainable by existing approaches. Our extensive ablation study, comparison to baseline methods and qualitative analysis demonstrate the improved performance of the proposed method." @default.
- W2908729273 created "2019-01-25" @default.
- W2908729273 creator A5008229377 @default.
- W2908729273 creator A5030424491 @default.
- W2908729273 creator A5037717179 @default.
- W2908729273 creator A5038007540 @default.
- W2908729273 creator A5062303050 @default.
- W2908729273 creator A5065368881 @default.
- W2908729273 date "2019-01-09" @default.
- W2908729273 modified "2023-09-27" @default.
- W2908729273 title "Composite Shape Modeling via Latent Space Factorization" @default.
- W2908729273 cites W1522301498 @default.
- W2908729273 cites W1903029394 @default.
- W2908729273 cites W2057101663 @default.
- W2908729273 cites W2068337491 @default.
- W2908729273 cites W2092773680 @default.
- W2908729273 cites W2102556003 @default.
- W2908729273 cites W2118557299 @default.
- W2908729273 cites W2122676594 @default.
- W2908729273 cites W2143516773 @default.
- W2908729273 cites W2187089797 @default.
- W2908729273 cites W2190691619 @default.
- W2908729273 cites W2298992465 @default.
- W2908729273 cites W2342277278 @default.
- W2908729273 cites W2395937778 @default.
- W2908729273 cites W2402144811 @default.
- W2908729273 cites W2546066744 @default.
- W2908729273 cites W2553307952 @default.
- W2908729273 cites W2556802233 @default.
- W2908729273 cites W2560609797 @default.
- W2908729273 cites W2560722161 @default.
- W2908729273 cites W2607170299 @default.
- W2908729273 cites W2612843093 @default.
- W2908729273 cites W2728326942 @default.
- W2908729273 cites W2734656015 @default.
- W2908729273 cites W2736477249 @default.
- W2908729273 cites W2753738274 @default.
- W2908729273 cites W2798777114 @default.
- W2908729273 cites W2807725536 @default.
- W2908729273 cites W2808127482 @default.
- W2908729273 cites W2883861033 @default.
- W2908729273 cites W2887374224 @default.
- W2908729273 cites W2903545703 @default.
- W2908729273 cites W2949671016 @default.
- W2908729273 cites W2949804481 @default.
- W2908729273 cites W2951004968 @default.
- W2908729273 cites W2953127211 @default.
- W2908729273 cites W2962793481 @default.
- W2908729273 cites W2962931817 @default.
- W2908729273 cites W2963022858 @default.
- W2908729273 cites W2963226019 @default.
- W2908729273 cites W2964082390 @default.
- W2908729273 cites W2964332570 @default.
- W2908729273 cites W2964674700 @default.
- W2908729273 cites W2987068636 @default.
- W2908729273 cites W3100891210 @default.
- W2908729273 cites W3101950626 @default.
- W2908729273 cites W3104503957 @default.
- W2908729273 cites W603908379 @default.
- W2908729273 hasPublicationYear "2019" @default.
- W2908729273 type Work @default.
- W2908729273 sameAs 2908729273 @default.
- W2908729273 citedByCount "2" @default.
- W2908729273 countsByYear W29087292732019 @default.
- W2908729273 countsByYear W29087292732020 @default.
- W2908729273 crossrefType "posted-content" @default.
- W2908729273 hasAuthorship W2908729273A5008229377 @default.
- W2908729273 hasAuthorship W2908729273A5030424491 @default.
- W2908729273 hasAuthorship W2908729273A5037717179 @default.
- W2908729273 hasAuthorship W2908729273A5038007540 @default.
- W2908729273 hasAuthorship W2908729273A5062303050 @default.
- W2908729273 hasAuthorship W2908729273A5065368881 @default.
- W2908729273 hasConcept C11413529 @default.
- W2908729273 hasConcept C119599485 @default.
- W2908729273 hasConcept C127413603 @default.
- W2908729273 hasConcept C129641003 @default.
- W2908729273 hasConcept C153180895 @default.
- W2908729273 hasConcept C154945302 @default.
- W2908729273 hasConcept C165801399 @default.
- W2908729273 hasConcept C187691185 @default.
- W2908729273 hasConcept C199360897 @default.
- W2908729273 hasConcept C2524010 @default.
- W2908729273 hasConcept C33923547 @default.
- W2908729273 hasConcept C41008148 @default.
- W2908729273 hasConcept C41608201 @default.
- W2908729273 hasConcept C43521106 @default.
- W2908729273 hasConcept C66322947 @default.
- W2908729273 hasConcept C89600930 @default.
- W2908729273 hasConceptScore W2908729273C11413529 @default.
- W2908729273 hasConceptScore W2908729273C119599485 @default.
- W2908729273 hasConceptScore W2908729273C127413603 @default.
- W2908729273 hasConceptScore W2908729273C129641003 @default.
- W2908729273 hasConceptScore W2908729273C153180895 @default.
- W2908729273 hasConceptScore W2908729273C154945302 @default.
- W2908729273 hasConceptScore W2908729273C165801399 @default.
- W2908729273 hasConceptScore W2908729273C187691185 @default.
- W2908729273 hasConceptScore W2908729273C199360897 @default.
- W2908729273 hasConceptScore W2908729273C2524010 @default.
- W2908729273 hasConceptScore W2908729273C33923547 @default.
- W2908729273 hasConceptScore W2908729273C41008148 @default.