Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908831454> ?p ?o ?g. }
- W2908831454 endingPage "193" @default.
- W2908831454 startingPage "184" @default.
- W2908831454 abstract "Despite the importance of delineating spatial modelling of gully headcuts (GHs) in erosion-prone environments, assessments of the factors that control the occurrence of headcuts is lacking. To fill this gap in the research, we identified 129 GHS field surveys. These 129 cases were randomly divided into two groups: 90 GHs (70%) for model training and 39 GHs (30%) for model validation. Subsequently, new unmanned aerial vehicle (UAV) imagery is used to develop spatial modelling to predict the location of GHs at sites prone to soil erosion in Golestan Province, Iran. Mapping GHs enables evaluation of 4 machine-learning techniques (or ensembles) – best-first decision tree (BFTree), bagging best-first decision tree (Bag-BFTree), random-subspace best-first decision tree (RS-BFTree), and rotation-forest best-first decision tree (RF-BFTree) – for modelling GHs. We use the information-gain ratio method to analyze the relationships between GHS and 22 GH conditioning factors. The 4 ensemble outputs are validated using a receiver operating characteristic (ROC) curve. The areas under the curves (AUCs) for prediction rates of the ensemble methods applied to the training group are BFTree – 88.3%, Bag-BFTree – 92.7%, RS-BFTree – 95.7%, and RF-BFTree – 93.2%. The AUCs for the model-validation group cases, however, are 84.9%, 94.1%, 97.4%, and 9.18%, respectively. Therefore, RS-BFTree is, statistically, the most effective ensemble method for accurate modelling of GHs. Variable-importance analyses using information-gain ratio indicate that out of 22 GH-influential factors, land use, slope degree, and slope-length are of more importance in developing of GH occurrence. Finally, to address the need for detailed observations and highly accurate erosion data in the field, UAV image-acquisition technologies are demonstrated." @default.
- W2908831454 created "2019-01-25" @default.
- W2908831454 creator A5006705342 @default.
- W2908831454 creator A5058653182 @default.
- W2908831454 creator A5062128630 @default.
- W2908831454 creator A5068278047 @default.
- W2908831454 creator A5075443696 @default.
- W2908831454 creator A5078872447 @default.
- W2908831454 creator A5081359338 @default.
- W2908831454 date "2019-03-01" @default.
- W2908831454 modified "2023-09-27" @default.
- W2908831454 title "Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree)" @default.
- W2908831454 cites W1192997862 @default.
- W2908831454 cites W1964311938 @default.
- W2908831454 cites W1966579280 @default.
- W2908831454 cites W1974614011 @default.
- W2908831454 cites W1977370485 @default.
- W2908831454 cites W1978110877 @default.
- W2908831454 cites W1981755063 @default.
- W2908831454 cites W1990653740 @default.
- W2908831454 cites W2005915296 @default.
- W2908831454 cites W2010261778 @default.
- W2908831454 cites W2029816621 @default.
- W2908831454 cites W2060775322 @default.
- W2908831454 cites W2064098831 @default.
- W2908831454 cites W2071153006 @default.
- W2908831454 cites W2072611758 @default.
- W2908831454 cites W2073883415 @default.
- W2908831454 cites W2089468765 @default.
- W2908831454 cites W2090477518 @default.
- W2908831454 cites W2108315895 @default.
- W2908831454 cites W2109094355 @default.
- W2908831454 cites W2110985329 @default.
- W2908831454 cites W2113242816 @default.
- W2908831454 cites W2123935991 @default.
- W2908831454 cites W2130627644 @default.
- W2908831454 cites W2140831914 @default.
- W2908831454 cites W2150757437 @default.
- W2908831454 cites W2215874512 @default.
- W2908831454 cites W2302877473 @default.
- W2908831454 cites W2310649008 @default.
- W2908831454 cites W2357076036 @default.
- W2908831454 cites W2592745428 @default.
- W2908831454 cites W2604912589 @default.
- W2908831454 cites W2617146439 @default.
- W2908831454 cites W2741517055 @default.
- W2908831454 cites W2745738958 @default.
- W2908831454 cites W2757787785 @default.
- W2908831454 cites W2761962795 @default.
- W2908831454 cites W2777155629 @default.
- W2908831454 cites W2791328889 @default.
- W2908831454 cites W2793127258 @default.
- W2908831454 cites W2794223913 @default.
- W2908831454 cites W2797310831 @default.
- W2908831454 cites W2806889219 @default.
- W2908831454 cites W2880239935 @default.
- W2908831454 cites W2884484990 @default.
- W2908831454 cites W2890029039 @default.
- W2908831454 cites W2897668753 @default.
- W2908831454 cites W2899396343 @default.
- W2908831454 cites W2900876551 @default.
- W2908831454 cites W4212883601 @default.
- W2908831454 cites W4244313837 @default.
- W2908831454 doi "https://doi.org/10.1016/j.geomorph.2019.01.006" @default.
- W2908831454 hasPublicationYear "2019" @default.
- W2908831454 type Work @default.
- W2908831454 sameAs 2908831454 @default.
- W2908831454 citedByCount "57" @default.
- W2908831454 countsByYear W29088314542019 @default.
- W2908831454 countsByYear W29088314542020 @default.
- W2908831454 countsByYear W29088314542021 @default.
- W2908831454 countsByYear W29088314542022 @default.
- W2908831454 countsByYear W29088314542023 @default.
- W2908831454 crossrefType "journal-article" @default.
- W2908831454 hasAuthorship W2908831454A5006705342 @default.
- W2908831454 hasAuthorship W2908831454A5058653182 @default.
- W2908831454 hasAuthorship W2908831454A5062128630 @default.
- W2908831454 hasAuthorship W2908831454A5068278047 @default.
- W2908831454 hasAuthorship W2908831454A5075443696 @default.
- W2908831454 hasAuthorship W2908831454A5078872447 @default.
- W2908831454 hasAuthorship W2908831454A5081359338 @default.
- W2908831454 hasConcept C105795698 @default.
- W2908831454 hasConcept C119857082 @default.
- W2908831454 hasConcept C127313418 @default.
- W2908831454 hasConcept C154945302 @default.
- W2908831454 hasConcept C159620131 @default.
- W2908831454 hasConcept C169258074 @default.
- W2908831454 hasConcept C33923547 @default.
- W2908831454 hasConcept C41008148 @default.
- W2908831454 hasConcept C5481197 @default.
- W2908831454 hasConcept C56289965 @default.
- W2908831454 hasConcept C58471807 @default.
- W2908831454 hasConcept C62649853 @default.
- W2908831454 hasConcept C84525736 @default.
- W2908831454 hasConcept C95623464 @default.
- W2908831454 hasConceptScore W2908831454C105795698 @default.
- W2908831454 hasConceptScore W2908831454C119857082 @default.
- W2908831454 hasConceptScore W2908831454C127313418 @default.