Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908832023> ?p ?o ?g. }
- W2908832023 abstract "Key Points Question Is the gap between brain age predicted from MRI and chronological age associated with incident dementia in a general population of Dutch adults? Findings Brain age was predicted using a deep learning model, using MRI-derived grey matter density maps. In a population based study including 5496 participants, the observed gap was significantly associated with the risk of dementia. Meaning The gap between MRI-brain predicted and chronological age is potentially a biomarker for dementia risk screening. Abstract Importance The gap between predicted brain age using magnetic resonance imaging (MRI) and chronological age may serve as biomarker for early-stage neurodegeneration and potentially as a risk indicator for dementia. However, owing to the lack of large longitudinal studies, it has been challenging to validate this link. Objective We aimed to investigate the utility of such a gap as a risk biomarker for incident dementia in a general Dutch population, using a deep learning approach for predicting brain age based on MRI-derived grey matter maps. Design Data was collected from participants of the cohort-based Rotterdam Study who underwent brain magnetic resonance imaging between 2006 and 2015. This study was performed in a longitudinal setting and all participant were followed up for incident dementia until 2016. Setting The Rotterdam Study is a prospective population-based study, initiated in 1990 in the suburb Ommoord of in Rotterdam, the Netherlands. Participants At baseline, 5496 dementia- and stroke-free participants (mean age 64.67±9.82, 54.73% women) were scanned and screened for incident dementia. During 6.66±2.46 years of follow-up, 159 people developed dementia. Main outcomes and measures We built a convolutional neural network (CNN) model to predict brain age based on its MRI. Model prediction performance was measured in mean absolute error (MAE). Reproducibility of prediction was tested using the intraclass correlation coefficient (ICC) computed on a subset of 80 subjects. Logistic regressions and Cox proportional hazards were used to assess the association of the age gap with incident dementia, adjusted for years of education, ApoEε4 allele carriership, grey matter volume and intracranial volume. Additionally, we computed the attention maps of CNN, which shows which brain regions are important for age prediction. Results MAE of brain age prediction was 4.45±3.59 years and ICC was 0.97 (95% confidence interval CI=0.96-0.98). Logistic regression and Cox proportional hazards models showed that the age gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence intervals CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Attention maps indicated that grey matter density around the amygdalae and hippocampi primarily drive the age estimation. Conclusion and relevance We show that the gap between predicted and chronological brain age is a biomarker associated with risk of dementia development. This suggests that it can be used as a biomarker, complimentary to those that are known, for dementia risk screening." @default.
- W2908832023 created "2019-01-25" @default.
- W2908832023 creator A5000910889 @default.
- W2908832023 creator A5003595933 @default.
- W2908832023 creator A5004336107 @default.
- W2908832023 creator A5013665840 @default.
- W2908832023 creator A5023677285 @default.
- W2908832023 creator A5026279369 @default.
- W2908832023 creator A5029373833 @default.
- W2908832023 creator A5038384386 @default.
- W2908832023 creator A5051498728 @default.
- W2908832023 creator A5052163713 @default.
- W2908832023 date "2019-01-12" @default.
- W2908832023 modified "2023-09-24" @default.
- W2908832023 title "Grey Matter Age Prediction as a Biomarker for Risk of Dementia: A Population-based Study" @default.
- W2908832023 cites W1984020445 @default.
- W2908832023 cites W1984994164 @default.
- W2908832023 cites W1985964670 @default.
- W2908832023 cites W2004758461 @default.
- W2908832023 cites W2009448627 @default.
- W2908832023 cites W2046557060 @default.
- W2908832023 cites W2054183703 @default.
- W2908832023 cites W2088897029 @default.
- W2908832023 cites W2094952053 @default.
- W2908832023 cites W2109530046 @default.
- W2908832023 cites W2109788848 @default.
- W2908832023 cites W2112150247 @default.
- W2908832023 cites W2112796928 @default.
- W2908832023 cites W2118421222 @default.
- W2908832023 cites W2119018277 @default.
- W2908832023 cites W2141403362 @default.
- W2908832023 cites W2156220037 @default.
- W2908832023 cites W2189810169 @default.
- W2908832023 cites W2338528581 @default.
- W2908832023 cites W2414637706 @default.
- W2908832023 cites W2513822269 @default.
- W2908832023 cites W2530506442 @default.
- W2908832023 cites W2538556778 @default.
- W2908832023 cites W2552208519 @default.
- W2908832023 cites W2579617530 @default.
- W2908832023 cites W2777186991 @default.
- W2908832023 cites W2796627087 @default.
- W2908832023 cites W2810823899 @default.
- W2908832023 cites W2883359435 @default.
- W2908832023 doi "https://doi.org/10.1101/518506" @default.
- W2908832023 hasPublicationYear "2019" @default.
- W2908832023 type Work @default.
- W2908832023 sameAs 2908832023 @default.
- W2908832023 citedByCount "12" @default.
- W2908832023 countsByYear W29088320232018 @default.
- W2908832023 countsByYear W29088320232019 @default.
- W2908832023 countsByYear W29088320232020 @default.
- W2908832023 countsByYear W29088320232021 @default.
- W2908832023 countsByYear W29088320232022 @default.
- W2908832023 crossrefType "posted-content" @default.
- W2908832023 hasAuthorship W2908832023A5000910889 @default.
- W2908832023 hasAuthorship W2908832023A5003595933 @default.
- W2908832023 hasAuthorship W2908832023A5004336107 @default.
- W2908832023 hasAuthorship W2908832023A5013665840 @default.
- W2908832023 hasAuthorship W2908832023A5023677285 @default.
- W2908832023 hasAuthorship W2908832023A5026279369 @default.
- W2908832023 hasAuthorship W2908832023A5029373833 @default.
- W2908832023 hasAuthorship W2908832023A5038384386 @default.
- W2908832023 hasAuthorship W2908832023A5051498728 @default.
- W2908832023 hasAuthorship W2908832023A5052163713 @default.
- W2908832023 hasBestOaLocation W29088320231 @default.
- W2908832023 hasConcept C126322002 @default.
- W2908832023 hasConcept C126838900 @default.
- W2908832023 hasConcept C143409427 @default.
- W2908832023 hasConcept C15744967 @default.
- W2908832023 hasConcept C185592680 @default.
- W2908832023 hasConcept C201903717 @default.
- W2908832023 hasConcept C204452808 @default.
- W2908832023 hasConcept C2778013878 @default.
- W2908832023 hasConcept C2779134260 @default.
- W2908832023 hasConcept C2779483572 @default.
- W2908832023 hasConcept C2781192897 @default.
- W2908832023 hasConcept C2781197716 @default.
- W2908832023 hasConcept C2908647359 @default.
- W2908832023 hasConcept C55493867 @default.
- W2908832023 hasConcept C71924100 @default.
- W2908832023 hasConcept C72563966 @default.
- W2908832023 hasConcept C99454951 @default.
- W2908832023 hasConceptScore W2908832023C126322002 @default.
- W2908832023 hasConceptScore W2908832023C126838900 @default.
- W2908832023 hasConceptScore W2908832023C143409427 @default.
- W2908832023 hasConceptScore W2908832023C15744967 @default.
- W2908832023 hasConceptScore W2908832023C185592680 @default.
- W2908832023 hasConceptScore W2908832023C201903717 @default.
- W2908832023 hasConceptScore W2908832023C204452808 @default.
- W2908832023 hasConceptScore W2908832023C2778013878 @default.
- W2908832023 hasConceptScore W2908832023C2779134260 @default.
- W2908832023 hasConceptScore W2908832023C2779483572 @default.
- W2908832023 hasConceptScore W2908832023C2781192897 @default.
- W2908832023 hasConceptScore W2908832023C2781197716 @default.
- W2908832023 hasConceptScore W2908832023C2908647359 @default.
- W2908832023 hasConceptScore W2908832023C55493867 @default.
- W2908832023 hasConceptScore W2908832023C71924100 @default.
- W2908832023 hasConceptScore W2908832023C72563966 @default.
- W2908832023 hasConceptScore W2908832023C99454951 @default.