Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908839265> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2908839265 abstract "Background: Exposure to ambient PM2.5 is known to harm public health in China. Satellite aerosol optical depth (AOD) were statistically associated with in-situ observations after 2013 to predict PM2.5, while the lack of monitoring data before 2013 created difficulties in historical estimates. Hindcast approaches using chemical transport models (CTM) can overcome this limitation, but still suffer incomplete coverage due to missing AOD or limited accuracy due to uncertainties of CTM.Objects: We attempted to produce historical PM2.5 estimates with complete spatiotemporal coverage and improved accuracy for exposure assessments in short- and long-term.Methods: First, we designed a machine learning (ML) model, which linked in-situ PM2.5 with high-dimensional expansion of numerous predictors (AOD, CTM outputs and etc.). To interpolate the missing predictions due to incomplete AOD, we incorporated another generalized additive model in next stage.Results: Cross-validations show that ML estimates were highly correlated with in-situ PM2.5, with R2 of 0.61, 0.68, and 0.75 for daily, monthly and annual averages, respectively. The two-stage estimates sacrificed accuracy on daily timescale (R2=0.55), but achieved complete spatiotemporal coverage and improved the accuracy of monthly (R2=0.71) and annual (R2=0.77) averages. The model was used to predict daily PM2.5 across China during 2000-2016 and estimate long-term trends for the period. The population-weighted PM2.5 significantly increased, by 2.10 (95% confidence interval [CI]: 1.74, 2.46) μg/m3/year during 2000–2007, and rapidly decreased by 4.51 (3.12, 5.90) μg/m3/year during 2013–2016.Conclusions: The data products could support large-scale epidemiological studies and risk assessments of PM2.5 in China." @default.
- W2908839265 created "2019-01-25" @default.
- W2908839265 creator A5039837606 @default.
- W2908839265 creator A5045593621 @default.
- W2908839265 creator A5054806035 @default.
- W2908839265 creator A5077886327 @default.
- W2908839265 date "2018-09-24" @default.
- W2908839265 modified "2023-09-25" @default.
- W2908839265 title "Spatiotemporal Continuous Estimates of PM2.5 Concentrations in China, 2000-2016: A Machine Learning Method with Inputs from Satellites, Chemical Transport Model, and Ground Observations" @default.
- W2908839265 doi "https://doi.org/10.1289/isesisee.2018.p03.0900" @default.
- W2908839265 hasPublicationYear "2018" @default.
- W2908839265 type Work @default.
- W2908839265 sameAs 2908839265 @default.
- W2908839265 citedByCount "0" @default.
- W2908839265 crossrefType "journal-article" @default.
- W2908839265 hasAuthorship W2908839265A5039837606 @default.
- W2908839265 hasAuthorship W2908839265A5045593621 @default.
- W2908839265 hasAuthorship W2908839265A5054806035 @default.
- W2908839265 hasAuthorship W2908839265A5077886327 @default.
- W2908839265 hasConcept C105795698 @default.
- W2908839265 hasConcept C127413603 @default.
- W2908839265 hasConcept C146978453 @default.
- W2908839265 hasConcept C153294291 @default.
- W2908839265 hasConcept C19269812 @default.
- W2908839265 hasConcept C205649164 @default.
- W2908839265 hasConcept C2777517185 @default.
- W2908839265 hasConcept C2779345167 @default.
- W2908839265 hasConcept C2908647359 @default.
- W2908839265 hasConcept C33923547 @default.
- W2908839265 hasConcept C39432304 @default.
- W2908839265 hasConcept C44249647 @default.
- W2908839265 hasConcept C71924100 @default.
- W2908839265 hasConcept C83002819 @default.
- W2908839265 hasConcept C99454951 @default.
- W2908839265 hasConceptScore W2908839265C105795698 @default.
- W2908839265 hasConceptScore W2908839265C127413603 @default.
- W2908839265 hasConceptScore W2908839265C146978453 @default.
- W2908839265 hasConceptScore W2908839265C153294291 @default.
- W2908839265 hasConceptScore W2908839265C19269812 @default.
- W2908839265 hasConceptScore W2908839265C205649164 @default.
- W2908839265 hasConceptScore W2908839265C2777517185 @default.
- W2908839265 hasConceptScore W2908839265C2779345167 @default.
- W2908839265 hasConceptScore W2908839265C2908647359 @default.
- W2908839265 hasConceptScore W2908839265C33923547 @default.
- W2908839265 hasConceptScore W2908839265C39432304 @default.
- W2908839265 hasConceptScore W2908839265C44249647 @default.
- W2908839265 hasConceptScore W2908839265C71924100 @default.
- W2908839265 hasConceptScore W2908839265C83002819 @default.
- W2908839265 hasConceptScore W2908839265C99454951 @default.
- W2908839265 hasIssue "1" @default.
- W2908839265 hasLocation W29088392651 @default.
- W2908839265 hasOpenAccess W2908839265 @default.
- W2908839265 hasPrimaryLocation W29088392651 @default.
- W2908839265 hasRelatedWork W1564188460 @default.
- W2908839265 hasRelatedWork W2020956218 @default.
- W2908839265 hasRelatedWork W2024993002 @default.
- W2908839265 hasRelatedWork W2049539733 @default.
- W2908839265 hasRelatedWork W2104008307 @default.
- W2908839265 hasRelatedWork W2127060851 @default.
- W2908839265 hasRelatedWork W2183428796 @default.
- W2908839265 hasRelatedWork W269907284 @default.
- W2908839265 hasRelatedWork W2900315278 @default.
- W2908839265 hasRelatedWork W4236989584 @default.
- W2908839265 hasVolume "2018" @default.
- W2908839265 isParatext "false" @default.
- W2908839265 isRetracted "false" @default.
- W2908839265 magId "2908839265" @default.
- W2908839265 workType "article" @default.