Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908901906> ?p ?o ?g. }
- W2908901906 abstract "Every year, an estimated 1.2 million children are trafficked (International Labour Office, 2002). The National Center for Missing & Exploited Children (NCMEC) received a 432% increase in child sexual abuse images for the purposes of identification between 2005 and 2009 (U.S. Department of Justice, 2010), and they assisted in the identification of 2,589 victims related to indecent images of children in 2015 (NCMEC, 2015a). In relation to the vast number of images received, machine-based facial recognition could help law enforcement and other organisations to match faces more efficiently. The use of facial recognition technology has become more popular within our society, but where rapid juvenile growth changes facial features recognition is challenging, especially for children under 15 years of age with changes to the outer contour of the face (Ramanathan and Chellappa, 2006). The challenge not only relates to the growth of the child’s face, but also relates to face recognition in the wild with unconstrained images. This study aims to provide an open-access database of facial images, documenting the different stages of facial growth from numerous individuals from birth to 19 years of age. There are currently very limited longitudinal databases available for the research community, and the collection of this database will benefit all researchers who wish to study age progression and facial growth. Ferguson (2015) suggested that facial recognition algorithms can perform better than humans in the identification of faces of children. Experiment 1 of this research takes a further step to explore how the difference in age group and age gap can affect the recognition rate using various facial recognition software, and explores the possibilities of group tagging. Results indicated that the use of multiple images is beneficial for the facial identification of children. Experiment 2 explores whether age progression work could further improve the recognition rate of juvenile faces. This study documents the workflow of a new method for digital manual age progression using a combination of previously published methods. The proposed age progression method for children recorded satisfactory levels of repeatability with facial measurements at the Nasion (n) and Trichion (tr) showing the most inaccuracy. No previous studies have tested how different conditions (i.e. blurring, resolution reduction, cropping and black and white) can affect machine-based facial recognition nor have they explored the relationship between age progression images and facial recognition software. The study found that reduction of the resolution of an age progression image improves automated facial recognition for juvenile identification, and manual age progressions are no more useful than the original image for facial identification of missing children. The outcome of this research directly benefits those who practice facial identification in relation to children, especially for age progression casework." @default.
- W2908901906 created "2019-01-25" @default.
- W2908901906 creator A5034393752 @default.
- W2908901906 date "2018-12-11" @default.
- W2908901906 modified "2023-09-23" @default.
- W2908901906 title "Facial identification from online images for use in the prevention of child trafficking and exploitation" @default.
- W2908901906 cites W1142913222 @default.
- W2908901906 cites W119334830 @default.
- W2908901906 cites W1504795754 @default.
- W2908901906 cites W1509966554 @default.
- W2908901906 cites W1595701647 @default.
- W2908901906 cites W1629239198 @default.
- W2908901906 cites W1712035052 @default.
- W2908901906 cites W1890427773 @default.
- W2908901906 cites W1936472688 @default.
- W2908901906 cites W1944194570 @default.
- W2908901906 cites W1965709203 @default.
- W2908901906 cites W1974413721 @default.
- W2908901906 cites W1974587077 @default.
- W2908901906 cites W1978370894 @default.
- W2908901906 cites W1980700998 @default.
- W2908901906 cites W1987787919 @default.
- W2908901906 cites W1988874866 @default.
- W2908901906 cites W1991805152 @default.
- W2908901906 cites W1992633278 @default.
- W2908901906 cites W1993221954 @default.
- W2908901906 cites W2001838935 @default.
- W2908901906 cites W2007200998 @default.
- W2908901906 cites W2016042371 @default.
- W2908901906 cites W2019405222 @default.
- W2908901906 cites W2028135900 @default.
- W2908901906 cites W2033616657 @default.
- W2908901906 cites W2039140324 @default.
- W2908901906 cites W2043872334 @default.
- W2908901906 cites W2044343643 @default.
- W2908901906 cites W2047508432 @default.
- W2908901906 cites W2053125863 @default.
- W2908901906 cites W2060141076 @default.
- W2908901906 cites W2063306756 @default.
- W2908901906 cites W2064634513 @default.
- W2908901906 cites W2083397494 @default.
- W2908901906 cites W2086435109 @default.
- W2908901906 cites W2091625990 @default.
- W2908901906 cites W2092564227 @default.
- W2908901906 cites W2094514756 @default.
- W2908901906 cites W2094779178 @default.
- W2908901906 cites W2095757522 @default.
- W2908901906 cites W2102416599 @default.
- W2908901906 cites W2114380981 @default.
- W2908901906 cites W2126972425 @default.
- W2908901906 cites W2128722067 @default.
- W2908901906 cites W2134721490 @default.
- W2908901906 cites W2136445538 @default.
- W2908901906 cites W2136499149 @default.
- W2908901906 cites W2138749074 @default.
- W2908901906 cites W2140959843 @default.
- W2908901906 cites W2152649185 @default.
- W2908901906 cites W2155162820 @default.
- W2908901906 cites W2167124079 @default.
- W2908901906 cites W2189414199 @default.
- W2908901906 cites W2274745179 @default.
- W2908901906 cites W2320319591 @default.
- W2908901906 cites W2323722855 @default.
- W2908901906 cites W2325939864 @default.
- W2908901906 cites W2402681295 @default.
- W2908901906 cites W2410304202 @default.
- W2908901906 cites W2421210708 @default.
- W2908901906 cites W2485314986 @default.
- W2908901906 cites W2548780814 @default.
- W2908901906 cites W2619842394 @default.
- W2908901906 cites W2620498498 @default.
- W2908901906 cites W2620834814 @default.
- W2908901906 cites W2622688736 @default.
- W2908901906 cites W2622826443 @default.
- W2908901906 cites W2793183233 @default.
- W2908901906 cites W2890172019 @default.
- W2908901906 cites W2893425640 @default.
- W2908901906 cites W2963958000 @default.
- W2908901906 cites W2963980515 @default.
- W2908901906 cites W3104668471 @default.
- W2908901906 cites W3157063724 @default.
- W2908901906 cites W1607983591 @default.
- W2908901906 cites W2113478731 @default.
- W2908901906 cites W2149871278 @default.
- W2908901906 cites W985617264 @default.
- W2908901906 doi "https://doi.org/10.24377/ljmu.t.00009901" @default.
- W2908901906 hasPublicationYear "2018" @default.
- W2908901906 type Work @default.
- W2908901906 sameAs 2908901906 @default.
- W2908901906 citedByCount "1" @default.
- W2908901906 countsByYear W29089019062020 @default.
- W2908901906 crossrefType "dissertation" @default.
- W2908901906 hasAuthorship W2908901906A5034393752 @default.
- W2908901906 hasConcept C116834253 @default.
- W2908901906 hasConcept C153180895 @default.
- W2908901906 hasConcept C154945302 @default.
- W2908901906 hasConcept C15744967 @default.
- W2908901906 hasConcept C17744445 @default.
- W2908901906 hasConcept C199539241 @default.
- W2908901906 hasConcept C2780262971 @default.