Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908917901> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2908917901 abstract "Accelerated by the proliferation of small, affordable, and lightweight electronically scanning radar systems as well as advances in UAS (Unmanned Aircraft System) technology, GRRR (Geo-Registered Radar Returns) data is becoming an incredible source for geolocalization in GPS-denied UAS navigation. Most existing approaches match aerial images to pre-stored DEMs through 3D terrain reconstruction or GPU-based terrain rendering techniques. However, these reconstruction or rendering processes are themselves error-prone and time-consuming, decreasing UAS navigation accuracy. In this work, we propose a novel geolicalization approach by directly matching aerial images to DEMs. Inspired by success of deep learning in face verification, we develop a Triplet Ranking network to embed aerial images and DEMs into the same low-dimensional feature space, where matching aerial-DEM are near one another and mismatched aerial-DEM are far apart. To create large-scale training dataset, we design an efficient terrain generation approach using pixel displacement mapping technique. This approach augments aerial datasets by simulating visual appearances of terrain under different lighting conditions. Experiments are conducted to show the effectiveness of our deep network in finding matches between aerial images and DEMs." @default.
- W2908917901 created "2019-01-25" @default.
- W2908917901 creator A5015912576 @default.
- W2908917901 creator A5028601592 @default.
- W2908917901 creator A5034411104 @default.
- W2908917901 date "2018-11-01" @default.
- W2908917901 modified "2023-09-26" @default.
- W2908917901 title "Aerial-DEM Geolocalization for GPS-Denied UAS Navigation" @default.
- W2908917901 cites W1782590233 @default.
- W2908917901 cites W1845101552 @default.
- W2908917901 cites W1946093182 @default.
- W2908917901 cites W1969891195 @default.
- W2908917901 cites W1975517671 @default.
- W2908917901 cites W2094108350 @default.
- W2908917901 cites W2116541198 @default.
- W2908917901 cites W2163605009 @default.
- W2908917901 cites W2194775991 @default.
- W2908917901 cites W2399745187 @default.
- W2908917901 cites W2467281799 @default.
- W2908917901 cites W2963542991 @default.
- W2908917901 cites W3099206234 @default.
- W2908917901 doi "https://doi.org/10.1109/icicip.2018.8606681" @default.
- W2908917901 hasPublicationYear "2018" @default.
- W2908917901 type Work @default.
- W2908917901 sameAs 2908917901 @default.
- W2908917901 citedByCount "1" @default.
- W2908917901 countsByYear W29089179012020 @default.
- W2908917901 crossrefType "proceedings-article" @default.
- W2908917901 hasAuthorship W2908917901A5015912576 @default.
- W2908917901 hasAuthorship W2908917901A5028601592 @default.
- W2908917901 hasAuthorship W2908917901A5034411104 @default.
- W2908917901 hasConcept C115961682 @default.
- W2908917901 hasConcept C154945302 @default.
- W2908917901 hasConcept C161840515 @default.
- W2908917901 hasConcept C176262533 @default.
- W2908917901 hasConcept C205649164 @default.
- W2908917901 hasConcept C205711294 @default.
- W2908917901 hasConcept C2776429412 @default.
- W2908917901 hasConcept C2987819851 @default.
- W2908917901 hasConcept C31972630 @default.
- W2908917901 hasConcept C41008148 @default.
- W2908917901 hasConcept C554190296 @default.
- W2908917901 hasConcept C58640448 @default.
- W2908917901 hasConcept C60229501 @default.
- W2908917901 hasConcept C62649853 @default.
- W2908917901 hasConcept C76155785 @default.
- W2908917901 hasConceptScore W2908917901C115961682 @default.
- W2908917901 hasConceptScore W2908917901C154945302 @default.
- W2908917901 hasConceptScore W2908917901C161840515 @default.
- W2908917901 hasConceptScore W2908917901C176262533 @default.
- W2908917901 hasConceptScore W2908917901C205649164 @default.
- W2908917901 hasConceptScore W2908917901C205711294 @default.
- W2908917901 hasConceptScore W2908917901C2776429412 @default.
- W2908917901 hasConceptScore W2908917901C2987819851 @default.
- W2908917901 hasConceptScore W2908917901C31972630 @default.
- W2908917901 hasConceptScore W2908917901C41008148 @default.
- W2908917901 hasConceptScore W2908917901C554190296 @default.
- W2908917901 hasConceptScore W2908917901C58640448 @default.
- W2908917901 hasConceptScore W2908917901C60229501 @default.
- W2908917901 hasConceptScore W2908917901C62649853 @default.
- W2908917901 hasConceptScore W2908917901C76155785 @default.
- W2908917901 hasLocation W29089179011 @default.
- W2908917901 hasOpenAccess W2908917901 @default.
- W2908917901 hasPrimaryLocation W29089179011 @default.
- W2908917901 hasRelatedWork W1982218840 @default.
- W2908917901 hasRelatedWork W1992621196 @default.
- W2908917901 hasRelatedWork W2003766860 @default.
- W2908917901 hasRelatedWork W2119134307 @default.
- W2908917901 hasRelatedWork W2401150520 @default.
- W2908917901 hasRelatedWork W2883266550 @default.
- W2908917901 hasRelatedWork W2908917901 @default.
- W2908917901 hasRelatedWork W3084146410 @default.
- W2908917901 hasRelatedWork W43831400 @default.
- W2908917901 hasRelatedWork W585540279 @default.
- W2908917901 isParatext "false" @default.
- W2908917901 isRetracted "false" @default.
- W2908917901 magId "2908917901" @default.
- W2908917901 workType "article" @default.