Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908920565> ?p ?o ?g. }
- W2908920565 endingPage "699" @default.
- W2908920565 startingPage "688" @default.
- W2908920565 abstract "Summarization systems for various applications, such as opinion mining, online news services, and answering questions, have attracted increasing attention in recent years. These tasks are complicated, and a classic representation using bag-of-words does not adequately meet the comprehensive needs of applications that rely on sentence extraction. In this paper, we focus on representing sentences as continuous vectors as a basis for measuring relevance between user needs and candidate sentences in source documents. Embedding models based on distributed vector representations are often used in the summarization community because, through cosine similarity, they simplify sentence relevance when comparing two sentences or a sentence/query and a document. However, the vector-based embedding models do not typically account for the salience of a sentence, and this is a very necessary part of document summarization. To incorporate sentence salience, we developed a model, called CCTSenEmb, that learns latent discriminative Gaussian topics in the embedding space and extended the new framework by seamlessly incorporating both topic and sentence embedding into one summarization system. To facilitate the semantic coherence between sentences in the framework of prediction-based tasks for sentence embedding, the CCTSenEmb further considers the associations between neighboring sentences. As a result, this novel sentence embedding framework combines sentence representations, word-based content, and topic assignments to predict the representation of the next sentence. A series of experiments with the DUC datasets validate CCTSenEmb's efficacy in document summarization in a query-focused extraction-based setting and an unsupervised ILP-based setting." @default.
- W2908920565 created "2019-01-25" @default.
- W2908920565 creator A5014646634 @default.
- W2908920565 creator A5036831783 @default.
- W2908920565 creator A5046476774 @default.
- W2908920565 creator A5067569759 @default.
- W2908920565 creator A5073731100 @default.
- W2908920565 creator A5087631670 @default.
- W2908920565 date "2020-04-01" @default.
- W2908920565 modified "2023-10-16" @default.
- W2908920565 title "Jointly Learning Topics in Sentence Embedding for Document Summarization" @default.
- W2908920565 cites W139529041 @default.
- W2908920565 cites W1615991656 @default.
- W2908920565 cites W1975061282 @default.
- W2908920565 cites W2055150316 @default.
- W2908920565 cites W2081265723 @default.
- W2908920565 cites W2085116970 @default.
- W2908920565 cites W2089391273 @default.
- W2908920565 cites W2137699405 @default.
- W2908920565 cites W2140440594 @default.
- W2908920565 cites W2150824314 @default.
- W2908920565 cites W2150869743 @default.
- W2908920565 cites W2250361277 @default.
- W2908920565 cites W2250753706 @default.
- W2908920565 cites W2250968833 @default.
- W2908920565 cites W2251654079 @default.
- W2908920565 cites W2251911042 @default.
- W2908920565 cites W2307381258 @default.
- W2908920565 cites W2317879529 @default.
- W2908920565 cites W2507868973 @default.
- W2908920565 cites W2509005432 @default.
- W2908920565 cites W2516087440 @default.
- W2908920565 cites W2594235367 @default.
- W2908920565 cites W2598569220 @default.
- W2908920565 cites W2702896255 @default.
- W2908920565 cites W2963502184 @default.
- W2908920565 cites W303217050 @default.
- W2908920565 cites W3138773240 @default.
- W2908920565 doi "https://doi.org/10.1109/tkde.2019.2892430" @default.
- W2908920565 hasPublicationYear "2020" @default.
- W2908920565 type Work @default.
- W2908920565 sameAs 2908920565 @default.
- W2908920565 citedByCount "15" @default.
- W2908920565 countsByYear W29089205652020 @default.
- W2908920565 countsByYear W29089205652021 @default.
- W2908920565 countsByYear W29089205652022 @default.
- W2908920565 countsByYear W29089205652023 @default.
- W2908920565 crossrefType "journal-article" @default.
- W2908920565 hasAuthorship W2908920565A5014646634 @default.
- W2908920565 hasAuthorship W2908920565A5036831783 @default.
- W2908920565 hasAuthorship W2908920565A5046476774 @default.
- W2908920565 hasAuthorship W2908920565A5067569759 @default.
- W2908920565 hasAuthorship W2908920565A5073731100 @default.
- W2908920565 hasAuthorship W2908920565A5087631670 @default.
- W2908920565 hasBestOaLocation W29089205652 @default.
- W2908920565 hasConcept C108154423 @default.
- W2908920565 hasConcept C154945302 @default.
- W2908920565 hasConcept C158154518 @default.
- W2908920565 hasConcept C170858558 @default.
- W2908920565 hasConcept C17744445 @default.
- W2908920565 hasConcept C199539241 @default.
- W2908920565 hasConcept C204321447 @default.
- W2908920565 hasConcept C23123220 @default.
- W2908920565 hasConcept C2777462759 @default.
- W2908920565 hasConcept C2777530160 @default.
- W2908920565 hasConcept C2780762811 @default.
- W2908920565 hasConcept C41008148 @default.
- W2908920565 hasConcept C41608201 @default.
- W2908920565 hasConcept C73555534 @default.
- W2908920565 hasConcept C97931131 @default.
- W2908920565 hasConceptScore W2908920565C108154423 @default.
- W2908920565 hasConceptScore W2908920565C154945302 @default.
- W2908920565 hasConceptScore W2908920565C158154518 @default.
- W2908920565 hasConceptScore W2908920565C170858558 @default.
- W2908920565 hasConceptScore W2908920565C17744445 @default.
- W2908920565 hasConceptScore W2908920565C199539241 @default.
- W2908920565 hasConceptScore W2908920565C204321447 @default.
- W2908920565 hasConceptScore W2908920565C23123220 @default.
- W2908920565 hasConceptScore W2908920565C2777462759 @default.
- W2908920565 hasConceptScore W2908920565C2777530160 @default.
- W2908920565 hasConceptScore W2908920565C2780762811 @default.
- W2908920565 hasConceptScore W2908920565C41008148 @default.
- W2908920565 hasConceptScore W2908920565C41608201 @default.
- W2908920565 hasConceptScore W2908920565C73555534 @default.
- W2908920565 hasConceptScore W2908920565C97931131 @default.
- W2908920565 hasFunder F4320321001 @default.
- W2908920565 hasFunder F4320336026 @default.
- W2908920565 hasIssue "4" @default.
- W2908920565 hasLocation W29089205651 @default.
- W2908920565 hasLocation W29089205652 @default.
- W2908920565 hasOpenAccess W2908920565 @default.
- W2908920565 hasPrimaryLocation W29089205651 @default.
- W2908920565 hasRelatedWork W132250100 @default.
- W2908920565 hasRelatedWork W2036027075 @default.
- W2908920565 hasRelatedWork W2093597205 @default.
- W2908920565 hasRelatedWork W2170202678 @default.
- W2908920565 hasRelatedWork W2389846579 @default.
- W2908920565 hasRelatedWork W2392495745 @default.