Matches in SemOpenAlex for { <https://semopenalex.org/work/W2908941128> ?p ?o ?g. }
- W2908941128 endingPage "2773" @default.
- W2908941128 startingPage "2760" @default.
- W2908941128 abstract "Group testing is the process of pooling arbitrary subsets from a set of n items so as to identify, with a minimal number of tests, a “small” subset of d defective items. In “classical” non-adaptive group testing, it is known that when d is substantially smaller than n, Θ(dlog(n)) tests are both information-theoretically necessary and sufficient to guarantee recovery with high probability. Group testing schemes in the literature that meet this bound require most items to be tested Ω(log(n)) times, and most tests to incorporate Ω(n/d) items. Motivated by physical considerations, we study group testing models in which the testing procedure is constrained to be “sparse.” Specifically, we consider (separately) scenarios in which 1) items are finitely divisible and hence may participate in at most γ ∈ o(log(n)) tests; or 2) tests are size-constrained to pool no more than ρ ∈ o(n/d) items per test. For both scenarios, we provide information-theoretic lower bounds on the number of tests required to guarantee high probability recovery. In particular, one of our main results shows that γ-finite divisibility of items forces any non-adaptive group testing algorithm with the probability of recovery error at most ϵ to perform at least γd(n/d) <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>(1-5ϵ)/γ</sup> tests. Analogously, for ρ-sized constrained tests, we show an information-theoretic lower bound of Ω(n/ρ) tests for high-probability recovery-hence in both settings the number of tests required grows dramatically (relative to the classical setting) as a function of n. In both scenarios, we provide both randomized constructions and explicit constructions of designs with computationally efficient reconstruction algorithms that require a number of tests that is optimal up to constant or small polynomial factors in some regimes of n, d, γ, and ρ. The randomized design/reconstruction algorithm in the ρ-sized test scenario is universal-independent of the value of d, as long as ρ ∈ o(n/d). We also investigate the effect of unreliability/noise in test outcomes, and show that whereas the impact of noise in test outcomes can be obviated with a small (constant factor) penalty in the number of tests in the ρ-sized tests scenario, there is no group-testing procedure, regardless of the number of tests, that can combat noise in the γ-divisible scenario." @default.
- W2908941128 created "2019-01-25" @default.
- W2908941128 creator A5018283928 @default.
- W2908941128 creator A5021229539 @default.
- W2908941128 creator A5089321118 @default.
- W2908941128 creator A5090091569 @default.
- W2908941128 date "2019-05-01" @default.
- W2908941128 modified "2023-10-03" @default.
- W2908941128 title "Nearly Optimal Sparse Group Testing" @default.
- W2908941128 cites W1970097758 @default.
- W2908941128 cites W1975680434 @default.
- W2908941128 cites W1990807929 @default.
- W2908941128 cites W2015609897 @default.
- W2908941128 cites W2067389921 @default.
- W2908941128 cites W2096573287 @default.
- W2908941128 cites W2112838414 @default.
- W2908941128 cites W2157745065 @default.
- W2908941128 cites W2158419847 @default.
- W2908941128 cites W2159716457 @default.
- W2908941128 cites W2164604747 @default.
- W2908941128 cites W2167973519 @default.
- W2908941128 cites W2173497155 @default.
- W2908941128 cites W2483519421 @default.
- W2908941128 cites W2510244936 @default.
- W2908941128 cites W256251597 @default.
- W2908941128 cites W2582049860 @default.
- W2908941128 cites W2782695171 @default.
- W2908941128 cites W2801655986 @default.
- W2908941128 cites W2885688104 @default.
- W2908941128 cites W2962706095 @default.
- W2908941128 cites W2963146668 @default.
- W2908941128 cites W2963914402 @default.
- W2908941128 cites W2963991930 @default.
- W2908941128 cites W3098506715 @default.
- W2908941128 cites W3099510449 @default.
- W2908941128 cites W3100305021 @default.
- W2908941128 cites W3101536548 @default.
- W2908941128 cites W3103169419 @default.
- W2908941128 cites W3105223537 @default.
- W2908941128 cites W4239807698 @default.
- W2908941128 cites W4250519137 @default.
- W2908941128 cites W2962959405 @default.
- W2908941128 doi "https://doi.org/10.1109/tit.2019.2891651" @default.
- W2908941128 hasPublicationYear "2019" @default.
- W2908941128 type Work @default.
- W2908941128 sameAs 2908941128 @default.
- W2908941128 citedByCount "28" @default.
- W2908941128 countsByYear W29089411282020 @default.
- W2908941128 countsByYear W29089411282021 @default.
- W2908941128 countsByYear W29089411282022 @default.
- W2908941128 countsByYear W29089411282023 @default.
- W2908941128 crossrefType "journal-article" @default.
- W2908941128 hasAuthorship W2908941128A5018283928 @default.
- W2908941128 hasAuthorship W2908941128A5021229539 @default.
- W2908941128 hasAuthorship W2908941128A5089321118 @default.
- W2908941128 hasAuthorship W2908941128A5090091569 @default.
- W2908941128 hasBestOaLocation W29089411281 @default.
- W2908941128 hasConcept C105795698 @default.
- W2908941128 hasConcept C11413529 @default.
- W2908941128 hasConcept C114614502 @default.
- W2908941128 hasConcept C118615104 @default.
- W2908941128 hasConcept C134306372 @default.
- W2908941128 hasConcept C144352353 @default.
- W2908941128 hasConcept C154945302 @default.
- W2908941128 hasConcept C171606756 @default.
- W2908941128 hasConcept C177264268 @default.
- W2908941128 hasConcept C177580056 @default.
- W2908941128 hasConcept C178790620 @default.
- W2908941128 hasConcept C185592680 @default.
- W2908941128 hasConcept C199360897 @default.
- W2908941128 hasConcept C2781311116 @default.
- W2908941128 hasConcept C33923547 @default.
- W2908941128 hasConcept C41008148 @default.
- W2908941128 hasConcept C70437156 @default.
- W2908941128 hasConcept C77553402 @default.
- W2908941128 hasConcept C87007009 @default.
- W2908941128 hasConcept C88484641 @default.
- W2908941128 hasConceptScore W2908941128C105795698 @default.
- W2908941128 hasConceptScore W2908941128C11413529 @default.
- W2908941128 hasConceptScore W2908941128C114614502 @default.
- W2908941128 hasConceptScore W2908941128C118615104 @default.
- W2908941128 hasConceptScore W2908941128C134306372 @default.
- W2908941128 hasConceptScore W2908941128C144352353 @default.
- W2908941128 hasConceptScore W2908941128C154945302 @default.
- W2908941128 hasConceptScore W2908941128C171606756 @default.
- W2908941128 hasConceptScore W2908941128C177264268 @default.
- W2908941128 hasConceptScore W2908941128C177580056 @default.
- W2908941128 hasConceptScore W2908941128C178790620 @default.
- W2908941128 hasConceptScore W2908941128C185592680 @default.
- W2908941128 hasConceptScore W2908941128C199360897 @default.
- W2908941128 hasConceptScore W2908941128C2781311116 @default.
- W2908941128 hasConceptScore W2908941128C33923547 @default.
- W2908941128 hasConceptScore W2908941128C41008148 @default.
- W2908941128 hasConceptScore W2908941128C70437156 @default.
- W2908941128 hasConceptScore W2908941128C77553402 @default.
- W2908941128 hasConceptScore W2908941128C87007009 @default.
- W2908941128 hasConceptScore W2908941128C88484641 @default.
- W2908941128 hasFunder F4320306076 @default.